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ABSTRACT	

The	 main	 objective	 of	 this	 research	 project	 was	 to	 develop	 and	 utilize	 a	 prototype	
structural	health	monitoring	 system	 for	bridge	and	 to	evaluate	and	 refine	 corresponding	
experimental	 methods	 for	 quantitatively	 characterizing	 the	 global	 condition	 of	 the	
structure.	 Furthermore,	 various	 experimental	 methods	 considered	 to	 be	 suitable	 for	
conducting	 rapid	 and	 quantitative	 safety	 evaluations	 of	 bridges	 following	 natural	 or	
manmade	 hazards	 were	 the	 specific	 focus	 of	 this	 research.	 Presently,	 the	 safety	 and	
serviceability	of	bridges	critical	for	use	in	emergency	response	and	recovery	operations	are	
evaluated	through	on‐site	visual	inspections	of	individual	structures	by	teams	of	specially	
trained	 engineers	 or	 technicians;	 a	 process	 that	 is	 manpower‐intensive,	 subjective,	 and	
slow.	 Analytical	 and	 controlled	 static	 testing	methods	were	 employed	 to	 create	 baseline	
characterizations	of	the	structural	state	and	different	strategies	and	procedures	employing	
dynamic	 testing	methods	 for	 evaluated	 in	 conjunction	with	 the	 baselines	 to	 assess	 their	
potential	for	rapid	and	reliable	assessments	of	bridge	structures	both	during	their	normal	
service	 operation	 and	 in	 the	 immediate	 aftermath	 of	 hazard	 events.	 The	 quantitative	
obtained	 for	 prototype	 structure	 evaluated	 in	 this	 research	 were	 compared	 using	 a	
modified	load	rating	developed	from	the	relevant	AASHTO	bridge	evaluation	specifications.	
The	 research	 was	 conducted	 using	 instrumented	 physical	 models	 to	 minimize	 the	
influences	of	 some	uncertainties	associated	with	 the	behavior	of	 full‐scale	structures	and	
make	 the	 comparisons	more	 transparent,	 and	 because	 it	was	 not	 possible	 to	 implement	
and	 evaluate	 controlled	 damage	 scenarios	 on	 a	 full‐scale,	 in‐service	 bridge.	 The	
effectiveness	 of	 different	 dynamic	 testing	 and	 characterization	 strategies,	 different	
instrumentation	schemes	and	data	acquisition	architectures,	data	processing	and	analysis	
approaches,	 and	 their	optimal	 integration	was	 systematically	evaluated	 in	 the	 laboratory	
using	 a	 structural	 identification	 framework,	 and	 this	 framework	 is	 also	 suitable	 for	
implementing	these	approaches	on	full‐scale	bridges.	
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1. INTRODUCTION	

1.1 BACKGROUND	

A	 safe	 and	 efficient	 transportation	 infrastructure	 system	 is	 vital	 to	 sustaining	 the	

nation’s	economic	and	societal	well‐being.	The	U.S.	economy	is	implicitly	supported	by	the	

widespread	 access	 and	 interconnectedness	 of	 different	 cities	 distributed	 over	 vast	

geographic	 distances.	 Businesses	 depend	 on	 goods	 being	 delivered	 from	 all	 over	 the	

country	 in	 a	 timely	 and	 efficient	 manner.	 Metropolitan	 areas	 depend	 on	 food	 being	

delivered	 to	 the	 cities	 by	 trucks	 from	 adjacent	 farming	 communities,	 or	 in	 many	 cases,	

farming	communities	in	other	states.	The	fact	that	many	infrastructure	assets	are	becoming	

aged	 beyond	 their	 expected	 life‐span	 poses	 serious	 concerns	 about	 the	 welfare	 of	 our	

nation’s	infrastructure	system.	

Natural	 or	 man‐made	 hazard	 events	 can	 adversely	 impact	 the	 normal	 utility	 of	

transportation	 infrastructure	 systems,	 but	 more	 importantly,	 they	 can	 limit	 the	

serviceability	and	safety	of	transportation	infrastructure	systems	for	emergency	response	

and	recovery	operations	that	occur	in	the	aftermath	of	such	events.	This	is	especially	true	

for	bridges	since	the	function	of	these	structures	 is	to	allow	the	transportation	system	to	

overcome	the	various	natural	and	other	physical	obstructions	 that	would	otherwise	 limit	

the	continuity	of	the	transportation	network.		

Furthermore,	 the	 occurrence	 of	 a	 hazard	 event	 will	 impact	 the	 utility	 of	 bridge	

structures	whether	or	not	they	have	actually	sustained	damage	during	the	event.	The	loads	
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that	are	associated	with	hazard	events	have	the	potential	to	damage	bridge	structures,	and	

until	 the	 condition	 of	 a	 bridge	 that	 has	 experienced	 a	 hazard	 event	 has	 actually	 been	

evaluated,	 it	 is	 practically	 impossible	 to	 reliably	 assess	 its	 serviceability	 and	 safety.	 It	

follows	that	using	bridges	with	unknown	serviceability	and	safety	characteristics	must	be	

restricted	due	 to	 life‐safety	considerations.	Those	bridges	 that	are	 found	 to	have	actually	

sustained	damage	as	a	result	of	a	hazard	must	be	further	evaluated	to	determine	if	they	can	

safely	 and	 reliably	 handle	 their	 normal	 operational	 loads	 in	 addition	 to	 the	 live	 loads	

associated	with	emergency	response	and	post‐hazard	recovery	operations.		

Most	bridges	 in	urban	areas	are	subject	 to	high	 levels	of	 service	demands,	and	 if	 the	

use	of	one	or	more	of	these	structures	is	restricted	as	a	result	of	a	hazard	event,	it	would	

impact	 vast	 numbers	 of	 people.	 Furthermore,	 the	 ability	 to	 quickly	move	 the	manpower	

and	supplies	critical	 for	 the	ensuing	emergency	response	and	recovery	operations	would	

also	be	reduced,	since	many	critical	transportation	pipelines	into	and	out	of	that	city	would	

be	 shut	 down.	 Given	 the	 high	 population	 densities	 found	 in	 cities,	 even	 having	 a	 small	

number	of	bridges	shut	down	would	create	a	 large	demand	on	 the	 remaining	bridges	on	

any	available	detour	routes.		The	traffic	would	back	up,	and	the	bridges	located	on	alternate	

routes	would	be	subject	to	usage	in	excess	of	their	normal	service	level	demands.	

It	can	also	be	argued	that	the	effect	of	hazard	events	on	the	utility	of	bridge	structures	

is	 just	 as	 critical	 in	 rural	 regions	 as	 it	 is	 for	 densely	 populated	 urban	 areas.	 While	

population	 density	 leading	 to	 high	 demand	 is	 not	 an	 issue,	 increased	 travel	 times	 and	

distances	are	critical	concerns.		In	rural	areas,	the	loss	of	a	single	bridge	can	easily	lead	to	

very	long	detours	that	 in	some	cases	can	exceed	50	miles	or	more.	 	The	amount	of	traffic	
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would	not	be	great,	but	 the	added	time	for	emergency	response	and	recovery	vehicles	 to	

make	 a	 given	 route	 would	 be	 greatly	 affected.	 	 Rural	 areas	 often	 have	 few	 alternative	

routes,	and	they	are	typically	spread	over	very	large	distances.	

It	 is	clear	that	bridges	are	vital	 to	sustaining	the	nation’s	economic	and	societal	well‐

being	and	play	a	critical	role	in	emergency	response	and	recovery	operations	after	hazard	

events.		In	the	aftermath	of	a	hazard	event,	it	is	vitally	important	to	be	able	to	rapidly	and	

reliably	 determine	 if	 critical	 bridges	were	 damaged,	 and	 to	 evaluate	 if	 those	 bridges	 are	

functional	for	emergency	response	and	recovery	operations.	

1.2 CURRENT	STATUS	OF	U.S.	BRIDGES	

President	 Dwight	 D.	 Eisenhower	 championed	 the	 campaign	 to	 connect	 the	 country	

with	 an	 Interstate	 Highway	 System	 by	 signing	 into	 law	 the	 Federal‐Aid	 Highway	 Act	 of	

1956	(Weingroff,	1996).	 	This	Act	started	a	wave	of	construction	of	highways	and	bridges	

across	 the	 country.	 	 Unfortunately,	 a	 significant	 percentage	 of	 this	 transportation	

infrastructure	has	been	inadequately	maintained	and	renewed	in	subsequent	years.		

The	U.S.	has	a	considerable	number	of	bridges	built	in	the	1950’s	and	1960’s	that	are	in	

need	of	serious	repair	or	replacement.	Many	of	the	bridges	constructed	during	this	period	

were	only	 expected	 to	be	 in	 service	 for	50	 years,	 and	 the	 average	bridge	 in	 this	 country	

today	 is	 43	 years	 old	 (AASHTO,	 2010).	 Furthermore,	 many	 of	 the	 bridges	 constructed	

during	 this	 period	may	have	 received	minimal	 to	 no	maintenance	during	 their	 lifespans.	

According	to	the	2009	ASCE	Infrastructure	Report	Card,	the	overall	condition	of	America’s	

bridges	 merits	 a	 ‘C’	 grade,	 while	 the	 overall	 infrastructure	 rates	 as	 a	 ‘D’	 (ASCE,	 2009).		
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When	one	looks	at	the	Bureau	of	Transportation	Statistics	(2010),	it	can	be	seen	that	of	the	

603,259	total	U.S.	Highway	Bridges,	149,654,	or	24.8%,	of	them	are	“Structurally	Deficient”	

or	“Functionally	Obsolete.”		Figure	1.1	provides	additional	details	on	the	overall	condition	

of	U.S.	Bridges.	It	is	notable	that	the	percentage	of	structurally	deficient	bridges	in	the	total	

bridge	 inventory	 was	 only	 marginally	 decreased	 over	 a	 10	 year	 timeframe.	 Clearly,	 the	

overall	performance	and	condition	of	the	U.S.	bridge	inventory	is	a	problem	that	likely	will	

not	 be	 resolved	 in	 the	 short‐term	 at	 current	 funding	 levels.	 Furthermore,	 the	 aged	 and	

deteriorated	condition	of	the	nation’s	bridges	adds	significant	uncertainty	to	the	problem	

of	rapid	and	reliable	safety	evaluations	of	these	structures	following	hazard	events.	

	

	

	
Figure	1.1:	Summary	of	U.S.	Bridge	Conditions	(Bureau	of	Transportation	Statistics,	

2010)	

	

2000  2001 2002 2003 2004 2005 2006 2007 2008 2009

TOTAL all bridges 589,674 589,685 590,887 591,940 593,813 595,363 597,340 599,766 601,396 603,259

Urban 133,384 133,401 135,339 135,415 137,598 142,408 146,041 151,171 153,407 156,305

Rural 456,290 456,284 455,548 456,525 456,215 452,955 451,299 448,595 447,989 446,954

Structurally deficient bridges, total 86,678 83,595 81,261 79,775 77,752 75,923 73,784 72,520 71,461 71,177

Urban 13,079 12,705 12,503 12,316 12,175 12,600 12,585 12,951 12,896 12,828

Rural 73,599 70,890 68,758 67,459 65,577 63,323 61,199 59,569 58,565 58,349

Functionally obsolete bridges, total 81,510 81,439 81,537 80,990 80,567 80,412 80,317 79,804 79,933 78,477

Urban 29,398 29,383 29,675 29,886 30,298 31,391 32,292 33,139 33,691 33,743
Rural 52,112 52,056 51,862 51,104 50,269 49,021 48,025 46,665 46,242 44,734

Taken from Table 1-27: Condition of U.S. Highway Bridges

NOTES http://www.bts.gov/publications/national_transportation_statistics/

U.S. totals include the 50 states, the District of Columbia, and Puerto Rico.

Explanations for the terms Structurally Deficient  and Functionally Obsolete  can be found on pages 14 and 15 in Chapter 3 of the Federal Highway 
Administration, 2006 Conditions and Performance Report, available at http://www.fhwa.dot.gov/policy/2006cpr/pdfs/chap3.pdf.

Table includes: Rural–Interstate, principal arterial, minor arterial, major collector, minor collector and local roads; Urban–Interstate, other freeways or 
expressways, other principal arterial, minor arterial, collector, and local roads. 
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1.3 CONDITION	ASSESSMENT	AND	EVALUATION	PRACTICE	FOR	BRIDGES	

The	condition	of	U.S.	bridges	is	assessed	and	evaluated	on	a	regular	basis	as	required	

by	 the	 National	 Bridge	 Inspection	 Program	 (NBIP).	 The	 NBIP	 was	 initiated	 in	 1968	

following	the	catastrophic	collapse	of	the	Silver	Bridge	over	the	Ohio	River,	and	since	then	

has	required	that	most	bridges	be	inspected	every	24	months	to	evaluate	their	condition,	

with	a	30	day	grace	period	 (National	Bridge	 Inspection	Standards,	2004).	 	Currently,	 the	

condition	of	a	bridge	is	assessed	and	evaluated	primarily	on	the	basis	of	visual	inspection	

(VI)	 data.	 VI	 data	 is	 obtained	 by	 an	 inspector	 physically	 looking	 over	 the	 structure	 and	

reporting	 deterioration	 and	 damage	 such	 as	 rust,	 cracks,	 proper	 weld	 terminations,	

changes	 in	 cross‐section,	 stress	 concentrations,	 etc.	 (Michael	 Baker	 Jr.,	 Inc.,	 1995).	 	 This	

data	is	then	translated	into	a	bridge	condition	rating,	and	a	load	rating.	Although	this	is	the	

accepted	approach	for	supporting	routine	maintenance	management	decisions	for	bridges,	

there	 are	 several	 important	 limitations	 with	 this	 condition	 assessment	 and	 evaluation	

method.	There	are	also	challenges	and	 limitations	related	 to	 the	use	of	 this	approach	 for	

evaluating	bridges	 that	 have	 experienced	hazard	 events.	 In	 such	 cases,	 the	 serviceability	

and	safety	of	many	bridges	needs	to	be	assessed	and	evaluated	very	rapidly	and	reliably	to	

support	critical	emergency	response	and	recovery	operations.		

1.3.1 Limitations	of	Visual	Inspection		

There	are	a	number	of	important	limitations	associated	with	the	use	of	VI	as	a	method	

for	condition	assessment	and	evaluation	of	bridges	for	routine	maintenance	management	

decisions	 or	 for	 supporting	 emergency	 response	 and	 recovery	 operations	 after	 hazard	
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events.		While	the	percentage	of	“Structurally	Deficient”	or	“Functionally	Obsolete”	bridges	

is	seen	to	be	slowly	decreasing	as	a	function	of	time	(see	Figure	1.1),	the	ASCE	Report	Card	

gives	five	points	of	action	in	order	to	raise	the	grade	of	our	bridge	system,	with	one	of	the	

items	being	“Update	Bridge	Inspection	Standards…,”	(ASCE,	2009).		While	visual	inspection	

does	 take	a	great	deal	of	experience	and	knowledge	to	be	performed	reliably,	 it	provides	

subjective	descriptions	of	bridge	condition.		Furthermore,	visual	inspection	techniques	are	

prone	to	a	number	of	other	limitations,	which	have	been	shown	to	affect	the	reliability	of	

the	resulting	evaluations.		A	study	evaluating	the	visual	inspection	results	for	bridges	that	

was	 conducted	 by	 the	 Federal	 Highway	 Administration	 (FHWA)	 found	 that	 between	

different	 inspectors,	 95%	 of	 bridge	 condition	 ratings	would	 vary	within	 2	 points	 on	 the	

same	 structure	 (Moore,	 2001).	 	 Several	 other	 inconsistencies	 were	 noted	 within	 the	

inspection	procedures	and	the	results	obtained,	further	showing	that	visual	inspection	can	

be	subjective	and	variable.	

Visual	 inspection	 is	 also	 inherently	 qualitative	 in	 nature,	 resulting	 in	 qualitative	

descriptions	 of	 the	 overall	 bridge	 health.	 	 An	 inspector	 is	 often	 limited	 to	 what	 can	 be	

described	by	the	accessibility	of	different	parts	of	the	bridge,	and	is	also	mostly	limited	to	

surface	 defects	 and	 not	 subsurface	 conditions.	 	 While	 nondestructive	 evaluation	 (NDE)	

methods	are	sometimes	used	in	conjunction	with	the	visual	inspection	to	mitigate	some	of	

these	limitations,	 it	still	will	only	yield	a	very	local	description	of	a	given	problem.	 	Being	

able	 to	 take	 these	 local	 descriptions	 and	 translate	 them	 into	 a	 global	 assessment	 of	 the	

bridge	 still	 only	 provides	 a	 qualitative	 description	 of	 the	 overall	 bridge	 health.		

Extrapolating	 data	 from	 localized	 descriptions	 of	 problems	 into	 a	 global	 picture	 of	 the	
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condition	 of	 the	 structure	 also	 amplifies	 any	 uncertainties	 that	 are	 present	 in	 the	 initial	

visual	 descriptions.	 	 Visual	 inspection	 techniques	 also	 require	 a	 significant	 amount	 of	

manpower,	 time,	 and	money	 to	both	 collect	 the	data	and	 to	process	 the	data	 into	usable	

results,	like	a	bridge	rating.	

The	 visual	 inspection	method	 of	 evaluating	 a	 bridges’	 overall	 structural	 health	 is	 an	

inefficient	method	for	a	rapid,	post‐hazard	condition	assessment	and	evaluation	of	bridges.		

It	takes	both	man‐power	and	time	to	complete,	and	produces	only	qualitative	results	based	

on	subjective	descriptions.	 	Further,	 this	method	does	not	provide	a	global	picture	of	 the	

overall	bridge	health,	and	it	is	difficult	to	see	hidden	problems.			

There	are	also	other	 challenges	 that	make	 it	difficult	 to	evaluate	 the	 safety	of	bridge	

structures	rapidly	and	reliably	 following	a	hazard	event.	 	 It	 is	seen	that	 the	only	baseline	

available	is	a	qualitative	one	based	on	visual	inspection.			Each	structure	is	also	unique,	and	

has	its	own	characteristics.		Furthermore,	there	is	limited	knowledge	on	how	the	effects	of	

existing	 defects,	 damage	 and	 deterioration	 will	 ultimately	 affect	 the	 safety	 and	

serviceability	of	a	bridge	that	has	been	exposed	to	a	hazard	event.	Given	these	challenges,	a	

more	 reliable	 method	 is	 needed	 for	 rapidly	 evaluating	 the	 safety	 of	 bridge	 structures	

following	hazard	events.		

1.3.2 Assessment	of	Bridges	following	Hazard	Events	

In	 the	 aftermath	 of	 a	 hazard	 event,	 the	most	 immediate	 assessment	 and	 evaluation	

need	with	respect	to	bridges	 is	to	determine	if	a	structure	is	still	serviceable	and	safe	 for	

the	live	loads	associated	with	emergency	response	and	recovery	operations.	 	One	can	see	
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that	 visual	 inspection	 techniques	 alone	 clearly	 do	 not	 address	 the	 needs	 present	 when	

determining	the	safety	of	a	bridge	following	a	hazard	event.		VI	is	neither	rapid	nor	remote,	

it	requires	a	person	or	team	to	carry	out	the	inspection	on	site,	it	is	subjective,	and	it	takes	

local	damage	information	and	infers	a	global	safety	rating	of	a	structure.		Clearly	a	different	

approach	is	needed.	

There	 are	 two	 basic	 approaches	 that	 can	 be	 employed	 to	 evaluate	 the	 safe	 load	

carrying	 capacity	of	 a	bridge	 structure	 following	a	hazard	event.	The	 first	 approach	 is	 to	

rely	almost	exclusively	on	analysis.	 In	 this	approach,	 the	 loads	 that	would	be	 induced	on	

the	 bridge	 as	 a	 result	 of	 various	hazard	 events	 are	 predicted	based	 on	 empirical	 and/or	

probabilistic	 analysis.	 The	 structure	 can	 then	 be	 evaluated	 using	 analytical	 or	 finite	

element	models	and	engineering	mechanics	principles	to	predict	where	damage	may	occur	

and	to	evaluate	the	effects	of	this	damage	on	the	serviceability	and	safe	load	capacity	of	the	

structure.	However,	several	problems	exist	with	this	approach.		Given	the	uncertainties	and	

existing	 knowledge	 gaps	 related	 to	 failure	modes	 and	mechanics,	 limitations	 exist	 in	 the	

ability	 to	 accurately	 predict	 actual	 loads	 due	 to	 any	 number	 of	 possible	 hazard	 events.		

Obtaining	reliable	predictions	of	the	damage	that	will	occur	due	to	a	hazard	event	is	not	a	

simple	task,	especially	considering	the	variety	of	structural	designs	and	details.		

Furthermore,	 “as‐built”	 plans	 are	 often	 hard	 to	 come	 by,	 and	 pose	 problems	 for	

creating	 accurate	 base‐line	models.	 	Without	 knowing	 all	 the	 details	 of	 a	 bridge	 design,	

including	materials	and	geometry,	it	would	be	nearly	impossible	to	create	an	accurate	finite	

element	model.		 	These	details	present	a	significant	challenge	for	obtaining	a	very	reliable	

prediction	of	the	safe	load	carrying	capacity	of	even	a	new	structure	in	“perfect	condition”	
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following	 a	 hazard	 event.	 	 The	 task	 is	 further	 complicated	 by	 the	 constructed	 nature	 of	

bridges	 that	 leads	 to	 additional	 uncertainties	 related	 to	 how	 any	 existing	 defects,	

deterioration	 or	 damage	 will	 affect	 the	 overall	 safety	 and	 serviceability	 of	 a	 bridge.		

Incorporating	 these	 attributes	 of	 an	 aged	 in‐service	 structure	 into	 the	 prediction	 of	 safe	

load	 carrying	 capacity	 introduces	 even	more	 uncertainty	 to	 the	 evaluation.	 	 Clearly	 this	

approach	is	not	the	most	efficient	or	effective.	

A	 second	 approach	 is	 to	 experimentally	 characterize	 the	 structure.	 	 Experimental	

characterization	 methods	 include	 local	 Non‐Destructive	 Evaluation	 (NDE),	 static	 testing	

methods,	and	dynamic	testing	methods.		NDE	still	contains	the	problem	of	only	being	able	

to	pinpoint	a	local	defect	or	damage,	and	a	global	picture	of	stability	must	still	be	inferred.		

Static	testing	techniques	would	include	doing	static	load	tests	measuring	the	displacement	

and/or	 strains	 induced	 on	 the	 structure.	 	 This	 technique	 can	 be	 rather	 cumbersome	 in	

setup,	 and	 also	 may	 require	 applying	 heavy	 loads	 to	 a	 structure	 where	 the	 safety	 is	 in	

question,	as	seen	in	Figure	1.2.		Dynamic	testing,	on	the	other	hand,	can	be	done	remotely	

and	provide	a	global	picture	of	health.		Continuous	monitoring	is	achievable,	and	a	variety	

of	test	methods	are	available.	

It	is	proposed	that	in	using	dynamic	testing	with	modal	analysis,	one	can	determine	a	

benchmark	 characteristic	 response	 of	 a	 bridge	 that	 can	 be	 used	 in	 lieu	 of,	 or	 along	 side	

with,	 visual	 inspection	 techniques	 to	 rate	 a	 bridge’s	 safety.	 	 Dynamic	 characterization	

includes	 dynamic	 properties,	 which	 are	 structural	 characteristics	 of	 a	 system.	 	 These	

characteristics	are	functions	of	the	structural	configuration,	stiffness,	boundary	conditions,	

mass,	etc.	 	Any	changes	in	structural	characteristics	due	to	damage,	whether	over	time	or	
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2. SCOPE	OF	WORK	

The	 objective	 of	 this	 research	 project	 was	 to	 devise	 and	 refine	 Structural	 Health	

Monitoring	(SHM)	methods	and	the	associated	quantitative	characterization	methods	with	

the	specific	goal	of	enabling	rapid	and	reliable	safety	evaluations	of	critical	transportation	

infrastructure	elements,	and	in	particular	bridges,	following	natural	or	manmade	hazards.	

Presently,	the	safety	and	serviceability	of	these	transportation	infrastructure	assets	for	use	

in	 emergency	 response	 and	 recovery	 operations	 are	 evaluated	 through	 on‐site	 visual	

inspections	of	individual	structures	by	teams	of	specially	trained	engineers	or	technicians;	

a	process	that	is	manpower‐intensive,	subjective,	and	slow.		

The	researchers	were	able	to	identify	and	evaluate	different	strategies	and	procedures	

using	 dynamic	 testing	methods	 to	 rapidly	 and	 reliably	 characterize	 in‐service	 structures	

both	during	their	normal	operation,	and	in	the	immediate	aftermath	of	hazard	events.	The	

global	level	quantitative	characterization	of	a	bridge	obtained	through	dynamic	testing	can	

serve	 as	 a	 baseline	 for	 SHM	 of	 the	 structure.	 The	 research	 program	 included	 laboratory	

investigations	 of	 this	 approach	 using	 two	 small	 scale	 physical	 model	 structures.	 The	

effectiveness	 of	 different	 dynamic	 testing	 and	 characterization	 strategies,	 different	

instrumentation	schemes	and	data	acquisition	architectures,	data	processing	and	analysis	

approaches,	 and	 their	optimal	 integration	was	 systematically	evaluated	 in	 the	 laboratory	

using	a	structural	identification	framework,	and	will	be	implemented	in	the	future	in	a	field	

study.	 	 Specifically,	 modal	 flexibility	 was	 the	 main	 comparison	 tool	 within	 the	 dynamic	
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testing,	given	that	 it	provides	an	accurate	representation	of	 the	structure,	and	provides	a	

global	picture	of	the	structural	response.	

2.1 RESEARCH	OBJECTIVES		

The	 research	 presented	 had	 four	 objectives,	 each	 of	which	 are	 described	 below	 and	

explained	in	the	following	sections.			

2.1.1 Optimum	Bridge	Health	Monitoring	Strategy	

The	 overarching	 objective	 of	 the	 research	 was	 to	 recommend	 an	 optimum	 bridge	

health	 monitoring	 strategy.	 	 This	 strategy	 was	 to	 be	 a	 dynamic	 testing	 system	 able	 to	

rapidly	and	remotely	asses	the	damages	acquired	by	a	bridge	following	a	hazard	event.		It	

would	 include	 the	 best	 “before”	 and	 “after”	 testing	 strategies	 (analytical,	 static,	 impact,	

shaker,	ambient,	or	combinations)	for	assessing	the	bridge’s	global	safety.		In	order	to	fulfill	

this	 objective,	 three	 additional	 objectives	were	 created	 as	 supporting	 objectives,	 and	 are	

explained	in	the	following	sections.	

2.1.2 Dynamic	Testing	Strategies	

A	 secondary	 goal	was	 to	 evaluate	 the	 effectiveness	 of	 different	 dynamic	 testing	 and	

characterization	 strategies,	 different	 instrumentation	 schemes	 and	 different	 data	

acquisition	architectures.	 	Three	different	 types	of	dynamic	 tests	were	evaluated:	 impact	

testing,	 shaker	 testing,	 and	 ambient	 testing.	 	 In	 the	 first	 two	 cases,	 both	 the	 inputs	 and	

outputs	were	measured.		With	ambient	testing,	only	the	outputs	were	measured.			
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Dynamic	 testing	 has	 been	 around	 for	 a	 long	 time,	 with	 pioneering	work	 on	 bridges	

starting	in	the	1950’s	and	1960’s	(Varney	&	Galambos,	1966).		Cantieni	(1984)	summarized	

a	 series	 of	 dynamic	 tests	 on	bridges	 using	 several	 different	 input	 types,	with	 the	 goal	 of	

relating	 frequencies	 to	 span	 length.	 	 In	 the	 1980’s	 and	 1990’s	 structural	 identification	

procedures	were	heavily	studied,	with	Douglas	and	Reid	(1982)	being	the	first.		Aktan	et	al.	

(1997)	 developed	 a	 structural	 identification	 framework	 for	 analyzing	 structures,	 and	

provided	examples	using	impact,	shaker,	and	ambient	testing.		Results	showed	very	similar	

modal	properties	from	the	impact	and	shaker	testing,	but	relied	on	ambient	vibrations	only	

for	 long	 term	 monitoring.	 	 Farrar	 et	 al	 (2000)	 reported	 on	 the	 variability	 of	 modal	

parameters	and	used	 impact	as	well	as	ambient	vibration	 testing.	 	Analysis	 revealed	 that	

relying	 on	 modal	 frequencies	 and	 mode	 shapes	 alone	 was	 not	 adequate	 for	 identifying	

damage.		Moyo	et	al.	(2004)	used	shaker	and	ambient	testing	to	study	the	change	in	modal	

parameters	 of	 a	 bridge	 that	 underwent	 renovations	 in	 Singapore.	 	While	 the	 previously	

mentioned	studies	were	excellent	 studies	 that	were	 important	 to	 the	 field,	 none	of	 them	

studied	 the	direct	 differences	between	 the	 types	of	 tests	when	 it	 came	 to	pre‐	 and	post‐	

change.	 	 The	 research	 tended	 to	 rely	 on	 forced	 input	 testing	 to	 create	 an	 initial	

characterization,	with	long	term	monitoring	done	with	ambient	testing	to	monitor	changes	

in	frequencies	and	mode	shapes.			

Many	 other	 studies	 have	 been	 done	 with	 intentionally	 applied	 damage	 scenarios	 to	

develop	methods	to	detect	and/or	locate	damage.		Most	of	these	relied	on	the	same	type	of	

test	before	and	after	the	damage	was	induced,	and	therefore	did	not	provide	input	into	the	

differences	between	impact,	shaker,	and	ambient	testing,	nor	did	they	provide	insight	into	
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which	type	of	test	would	be	best	suited	for	rapid	condition	assessment	following	a	hazard	

event.	 	 Raghavendrachar	 and	 Aktan	 (1992)	 presented	 a	 method	 for	 obtaining	 modal	

flexibility	from	multi‐reference	impact	testing.	 	The	modal	 flexibility	 indices	proved	more	

reliable	 than	 using	 the	 modal	 parameters	 alone	 to	 identify	 damage.	 	 Toksoy	 and	 Aktan	

(1994)	carried	out	multiple	reference	impact	tests	during	several	levels	of	damage	induced	

to	a	bridge	structure,	and	used	modal	flexibility	to	locate	the	damage.	 	Aktan	et	al	(1993)	

carried	out	 shaker	 testing	of	a	 structure	 tested	 to	 failure.	 	To	 further	 investigate	damage	

detection	 possibilities,	 the	 Seymour	 Avenue	 Bridge	 in	 Cincinnati,	 OH	 was	 subjected	 to	

several	 damage	 scenarios	 and	 tested	 extensively	 (Aktan	 et	 al.	 1997;	 Catbas	 et	 al.	 2004;	

Catbas	&	Aktan,	 2002).	 	 The	 bridge	was	 subjected	 to	multi‐reference	 impact	 testing	 and	

truck	 loading	 tests,	 and	 modal	 flexibility	 and	 static	 flexibility	 were	 compared.	 	 In	 these	

research	papers,	the	authors	use	dynamic	testing	and	modal	flexibility	to	locate	or	identify	

that	damage	has	occurred,	with	no	further	action	taken.		One	goal	of	the	research	presented	

here	was	 to	use	 the	modal	 flexibility	matrix	 to	quantify	 the	damage	 that	may	be	present	

due	to	some	hazard	event.	

While	there	has	been	a	significant	amount	of	work	done	towards	dynamic	testing,	most	

studies	 have	 focused	 on	 structural	 identification,	 damage	 detection,	 and	 long	 term	

monitoring	with	ambient	vibrations.		Little	work	has	been	done	to	establish	what	types	of	

tests	 would	 be	 optimal	 for	 pre‐incident	 and	 post‐incident	 testing	 to	 obtain	 the	 best	

characterization.		Some	papers	have	pointed	out	that	modal	frequencies	and	mode	shapes	

are	 similar	 from	 the	different	 tests,	 but	 this	 notion	was	not	 fully	 carried	out	 to	 compare	

structural	 characterizations	 before	 and	 after	 damage.	 	 In	 this	 research,	 the	 goal	 was	 to	
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systematically	evaluate	the	different	testing	methods	and	determine	the	best	pre‐	and	post‐	

incident	testing	procedures	in	order	to	quantify	damage	obtained	by	a	bridge	due	to	some	

hazard	event.	

The	 final	 part	 of	 dynamic	 testing	 strategies	 that	was	 briefly	 explored	was	 hardware	

and	software	issues.	 	Each	of	the	different	testing	methods	(impact,	shaker,	and	ambient)	

had	 the	 ability	 to	 be	 employed	 with	 any	 number	 of	 instrumentation	 schemes	 or	 data	

acquisition	 architectures.	 	 In	 this	 research,	 three	 different	 data	 acquisition	 architectures	

were	used	in	various	stages	of	testing	in	order	to	evaluate	the	effectiveness	of	each	one	and	

note	 any	 serious	 differences.	 	 These	 are	 explained	 in	 later	 sections.	 	 In	 addition,	 several	

different	 software	packages	were	used	 to	 facilitate	 the	 testing	and	 for	post‐processing	of	

the	 experimental	 data.	 	 M+P	 International	 produces	 an	 off‐the‐shelf	 modal	 testing	 and	

analysis	software	package	called,	 “Smart	Office,”	and	was	evaluated	 in	order	 to	assess	 its	

effectiveness	and	ease	of	use	in	modal	testing.	 	National	Instruments	produces	a	software	

package	 called,	 “Signal	 Express,”	 that	 was	 also	 used	 for	 data	 collection	 in	 two	 of	 the	

different	 architectures.	 	 Data	 Physics	 Corporation	 produces	 proprietary	 software	 to	 be	

used	with	its	dynamic	signal	analyzer	hardware,	which	was	one	of	the	architectures	used.		

Finally,	post‐processing	techniques	were	carried	out	in	MATLAB	in	order	to	obtain	modal	

properties	not	found	from	the	other	packages.			
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2.1.3 Experimental	Sensor	Optimization	

Some	 work	 has	 been	 done	 with	 regard	 to	 sensor	 location	 optimization,	 but	

configuration	 is	 often	 decided	 upon	 based	 on	 experience	 and	 engineering	 judgment.			

Kripakaran	 et	 al.	 (2007)	 developed	 a	 global	 search	 algorithm	 for	 optimizing	 sensor	

placement,	and	found	it	to	be	effective	for	designing	measurement	systems	on	previously	

unmonitored	structures.		The	main	objective	in	sensor	placement	was	to	be	able	to	detect	

damage.		The	algorithm	developed	took	several	proposed	damaged	scenarios	and	ran	them	

through	 a	 looped	 process	 that	 reduced	 the	 number	 of	 sensors	 needed.	 	 This	 approach	

proved	to	be	unfeasible	due	to	the	need	for	several	damage	scenarios	to	be	envisioned	with	

finite	 element	 (FE)	 models,	 and	 the	 specific	 algorithm	 obtained.	 	 Another	 researcher	

compared	six	different	methods	of	 sensor	placement	optimization	 (Meo,	2005).	 	The	 test	

structure	was	 a	 narrow	width	 suspension	 bridge,	 and	 took	 the	 first	 three	modes	 as	 the	

controlling	modes	of	the	structure.	 	Catbas	(2006)	compared	the	mode	shapes	of	a	bridge	

based	on	sensors	placed	on	two	girders	vs.	all	six	girders,	and	found	that	the	smaller	set	of	

nodes	was	adequate	in	the	determination	of	mode	shapes	and	frequencies.		A	similar	work	

was	 undertaken	 by	 Wang	 (1998)	 showing	 the	 differences	 with	 mode	 shapes	 and	

frequencies	 when	 taking	 a	 small	 subset	 of	 nodes	 of	 a	 long	 span	 bridge.	 	 The	 methods	

employed	 for	 optimizing	 the	 structures	 were	 based	 on	 specific	 algorithms,	 while	 this	

research	focused	on	optimal	sensor	placement	determined	through	experimental	methods.			

Ideally,	a	large	number	of	sensors	would	be	used	on	a	given	structure	to	most	closely	

identify	 all	 of	 the	 contributing	modes	 and	 accurately	depict	 the	 associated	mode	 shapes.		

Using	 more	 sensors	 increases	 the	 spatial	 resolution	 of	 any	 identified	 modes,	 and	 also	
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provides	 redundancy	 to	 the	 instrumentation	 setup.	 	 If	 a	 sensor	 is	 later	 found	 to	 have	

malfunctioned,	 it	 could	 be	 disregarded	 and	 one	 could	 rely	 on	 the	 remaining	 sensors.	 	 In	

reality	though,	sensors	cost	money,	and	each	additional	channel	in	a	given	Data	Acquisition	

Unit	will	 add	 cost	 to	 the	 system.	 	 This	 research	 compared	 the	 effects	 of	 different	 sensor	

setups	on	the	identification	results	in	an	attempt	to	find	the	most	critical	sensors	for	each	

setup.	

Therefore,	a	systematic	removal	of	sensors	from	the	testing	setup	was	performed.		The	

actual	 sensors	were	 not	 removed	 from	 the	 structure	 and	 a	 new	 test	was	 not	 performed	

each	time.		Instead,	the	response	readings	were	removed	from	the	full	test	data	sets	in	the	

form	 of	 removing	 an	 entire	 column	 from	 the	 frequency	 response	 function	 (FRF)	matrix.		

This	way,	the	exact	same	test	data	was	used	and	the	uncertainty	from	taking	new	data	was	

removed.		The	modal	flexibility	was	re‐calculated	and	compared	with	the	results	containing	

the	 full	 set	of	 sensors.	While	 these	 results	were	 solely	based	off	 a	 laboratory	 study,	 they	

help	to	show	where	sensors	are	of	the	most	use	in	a	testing	setup	of	a	bridge.		Since	more	

sensors	 equals	more	money	 in	 hardware,	 software,	 and	 setup	 time,	 these	 results	will	 be	

extremely	useful	for	bridge	testers.			

2.1.4 Modified	Load	Rating	

There	 exists	 a	 need	 for	 obtaining	 a	 load	 rating,	 or	 modified	 load	 rating,	 from	 the	

dynamic	characterization	of	a	structure.	 	Static	 load	testing	as	a	means	of	 load	rating	has	

been	practiced	 for	 some	 time.	 	Many	 authors	 have	developed	 load	 ratings	 for	 bridges	 in	

previous	 research,	 but	 they	 primarily	 do	 so	 from	 updated	 finite	 element	 models	 of	 the	
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structure	 of	 concern.	 	 Brownjohn	 et	 al.	 (2001)	 summarized	 efforts	 and	presented	 a	 case	

study	on	condition	assessment	 through	FEM	updating.	 	Kangas	et	al.	 (2004)	summarized	

work	 from	 the	 University	 of	 Cincinnati	 Infrastructure	 Institute	 aimed	 at	 obtaining	 load	

ratings	 from	 updated	 FE	 models.	 	 Ren	 et	 al.	 (2004)	 created	 an	 accurate	 finite	 element	

model	of	the	Roebling	Suspension	Bridge,	and	using	dynamic	testing,	updated	the	model	to	

match	 the	measured	 characteristics	of	 the	bridge.	 	 From	 the	updated	model,	 the	 authors	

were	able	to	come	up	with	a	bridge	load	capacity.		Catbas,	Ciloglu,	&	Aktan	(2005)	worked	

to	 identify	 parameters	 common	 to	 populations	 of	 bridges,	 and	 identify	 variation	 from	

statistical	samples.		This	work	was	achieved	through	field	calibrated	finite	element	models.	

Several	 researchers	 have	 shown	 that	 load	 rating	 is	 possible	 through	 finite	 element	

model	updating.		The	problem	with	the	approach	used	is	that	a	FE	model	must	be	made	for	

each	 structure	 and	 updated	 with	 any	 damage	 in	 order	 to	 achieve	 a	 load	 rating.	 	 The	

updating	of	the	model	to	match	the	characterization	found	from	dynamic	testing	is	a	time	

consuming	process.		Eliminating	the	need	for	a	calibrated	FE	model	would	greatly	shorten	

the	 time	needed	 to	obtain	a	 load	rating.	 	One	goal	of	 the	research	presented	here	was	 to	

investigate if there was a way to obtain a load rating from the flexibility matrix produced from 

the dynamic testing, thereby bridging the gap between dynamic characterization and usable 

results for bridge owners. 
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2.2 CHARACTERIZATION	METHODS	USED	

Results	 from	dynamic	 testing	 and	 the	 characterization	 strategies	were	 confirmed	 by	

the	 use	 of	 static	 and	 analytical	 evaluation	 techniques.	 	 Static	 testing	 produced	 a	 static	

flexibility	 matrix,	 which	 was	 directly	 compared	 to	 the	 modal	 flexibility	 matrix	 obtained	

from	dynamic	testing.		Analytical	techniques	included	a	finite	element	model	of	both	of	the	

test	structures	in	SAP2000,	and	the	implementation	of	a	theoretical	solution	for	the	simple	

cantilever	 case.	 	The	SAP2000	model	 allowed	 for	dynamic	and	static	 characterization.	 	 It	

also	 performed	modal	 analysis	 of	 the	 test	 structures,	 and	was	 compared	with	 the	 other	

testing	techniques	in	order	to	validate	the	results.		See	Figure	2.1	for	more	information.		

Structural	flexibility	was	used	as	the	baseline	characterization	compared	in	this	study.	

The	flexibility	matrix	of	a	structure	has	been	shown	to	be	a	reliable	signature	reflecting	the	

existing	condition	of	a	bridge	(Aktan,	1994;	Catbas,	2002),	and	has	been	shown	to	be	able	

to	detect	localized	damage	(Raghavendrachar	&	Aktan,	1992;	Catbas,	2006).		Mode	shapes	

and	 frequencies	 have	 been	 used	 in	 the	 past	 as	 a	 comparison	 tool,	 but	 a	 study	 on	 the	

Alamosa	Canyon	Bridge	showed	that	the	natural	frequency	would	vary	by	as	much	as	10%	

throughout	the	year	due	to	weather	changes	(Farrar,	1997).		A	study	done	by	Toksoy	and	

Aktan	 showed	 that	 localized	 damage	 showed	 a	 5.8%	 frequency	 shift,	 and	 that	 post‐

processing	 errors	 and	 temperature	 effects	 also	 caused	 a	 5%	 shift,	 concluding	 that	 a	

frequency	shift	alone	could	not	be	taken	as	a	definite	damage	indicator	(Toksoy,	1994).		It	

was	 also	 shown	 in	 this	 paper	 that	 flexibility	 and	 deflected	 shapes	 based	 off	 of	 flexibility	

proved	 to	 be	 damage	 sensitive	 indices.	 	 Another	 study	done	 by	 Catbas,	 Gul,	 and	Burkett	

used	 flexibility	 based	 curvature	 and	 deflection	 for	 damage	 detection	 and	 found	 these	
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indices	 performed	 well	 as	 indicators	 and	 locators	 of	 damage	 (Catbas,	 2008).	 	 Modal	

flexibility	and	deflected	shapes	based	on	loading	patterns	applied	to	the	flexibility	matrix	

were	used	by	the	author	as	part	of	the	structural	condition	evaluation	in	this	research.			

	
Figure	2.1:	Characterization	Techniques	

	

2.3 OVERVIEW	OF	RESEARCH	PROCESS	

The	 validation	 of	 characterization	 techniques	 was	 implemented	 on	 two	 separate	

laboratory	test	structures,	a	cantilever	model	and	a	steel	grid	model	structure.		The	testing	

procedure	implemented	was	a	four	tiered	approach,	as	shown	in	Figure	2.2.		Several	of	the	

different	types	of	tests	were	performed	in	each	of	the	tiers.		Static	load	testing	was	the	first	

test,	followed	by	impact	hammer	dynamic	testing,	then	dynamic	shaker	testing,	and	finally	

ambient	 input	 testing.	 	 In	 the	 first	 tier,	 a	 cantilever	beam	was	used	as	 the	 test	 structure.		

The	 reason	 for	 choosing	 such	 a	 structure	 was	 because	 it	 was	 a	 simple	 structure	 to	

conceptualize	 and	 analyze,	 and	 numerous	 closed‐form	 solutions	 describing	 its	 static	 and	

dynamic	 behavior	 are	 readily	 available.	 The	 testing	 performed	 on	 the	 cantilever	 beam	
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served	a	number	of	objectives	including	validating:	(1)	execution	of	the	different	dynamic	

testing	methods,	 (2)	 the	 sensors	 and	 data	 acquisition	 settings,	 (3)	 the	 data	 analysis	 and	

post‐processing	methods	(CMIF	algorithm,	M+P	software,	and	MATLAB	code),	and	(4)	the	

modal	flexibility	computation	from	the	dynamic	properties.		

After	 testing	 was	 completed	 on	 the	 cantilever	 beam,	 the	 testing	 approaches	 and	

analysis	methods	were	applied	 to	a	more	complicated	structure.	 	A	 steel	grid	model	was	

constructed	 in	 the	 research	 lab	 which	 provided	 an	 excellent	 avenue	 of	 expanding	 the	

proposed	test	methods	to	a	bridge‐type	structure.		This	structure	will	be	referred	to	as	the	

“grid”	 for	 the	 remainder	of	 this	 document.	 	The	 grid	was	built	 of	 standard	W8X10	beam	

sections	and	bolted	with	gusset	plates	at	the	joints.	 	Since	this	structure	did	not	contain	a	

concrete	deck,	 it	was	not	as	stiff	as	a	girder	bridge	would	be,	but	still	provided	excellent	

characteristics	 for	 evaluating	 an	 optimal	 SHM	method	 on	 simply	 supported	 bridge	 type	

structures.	 	The	grid	was	tested	in	a	similar	manner	as	the	cantilever	beam,	starting	with	

static	loading	and	ending	with	ambient	vibration	testing.			

The	grid	testing	was	used	to	explore	and	verify	the	capabilities	of	the	testing	and	data	

analysis	methods	for	detecting	damage	applied	to	the	structure.		Several	different	damage	

scenarios	were	induced	on	the	grid,	and	the	same	series	of	dynamic	tests	done	after	each	

damage	case.		The	results	from	these	tests	showed	how	the	structure	changed	globally	due	

to	localized	damage	scenarios.		The	specific	damage	scenarios	that	were	evaluated	with	the	

grid	model	included:	
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1. Removal	of	support	pillar.	

2. Removal	of	transverse	beam(s).	

3. Removal	of	gusset	plate(s).	

Finally,	 a	 systematic	 removal	 of	 sensors	 from	 the	 testing	 setup	was	 performed.	 	 For	

each	 damage	 case,	 the	 modal	 flexibility	 was	 re‐calculated	 and	 then	 compared	 with	 the	

results	containing	the	full	set	of	sensors.	The	results	from	these	tests	helped	to	show	where	

sensors	were	of	the	most	use	in	a	testing	setup	of	a	bridge.			

Overall,	 the	 capabilities	 of	 the	 different	 dynamic	 characterization	 approaches	 were	

evaluated	to	determine	the	most	reliable	and	effective	strategies	and	procedures	needed	to	

rapidly	evaluate	the	safety	and	serviceability	of	full‐scale	bridges	following	hazard	events.		

Strategies	 for	enabling	 the	safety	and	serviceability	evaluation	 to	be	performed	remotely	

were	 also	 evaluated.	 	 Specifically,	 the	 recommended	 experimental,	 analytical	 and	 data	

analysis	procedures	to	accomplish	this	were	identified	and	evaluated.	

	



	

Figure	2.22:	Testing	PProcess	
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3. DATA	PROCESSING	METHODS	

There	 are	 many	 post‐processing	 techniques	 available	 for	 extracting	 the	 dynamic	

characteristics	(modal	 frequencies,	modal	vectors	and	modal	scaling)	of	a	structure	using	

the	measured	 input	 and	 its	measured	vibrations.	 Several	 different	methods	 exist	 in	both	

the	 time	 domain	 (Complex	 exponential	 algorithm,	 Least	 squared	 complex	 exponential,	

Polyreference	time	domain,	Ibrahim	time	domain,	Eigensystem	realization	algorithm,	etc.)	

and	 the	 frequency	 domain	 (Polyreference	 frequency	 domain,	 Simultaneous	 frequency	

domain,	Multi‐reference	 frequency	 domain,	 Rational	 fraction	 polynomial,	 Complex	mode	

indicator	function,	etc).		Each	of	these	modal	parameter	estimation	techniques	has	its	own	

set	 of	 advantages	 and	 disadvantages.	 Catbas	 (1997)	 and	 Ciloglu	 (2006)	 thoroughly	

explored	the	formulation	and	background	of	the	different	methods	as	well	as	some	of	the	

advantages	 and	 disadvantages	 in	 their	 respective	 doctoral	 dissertations.	 	 Both	 are	

recommended	 as	 excellent	 sources	 of	 additional	 background	 information.	 	 Allemang	

(1999)	also	provides	a	comprehensive	background	on	the	different	types	of	available	post‐

processing	techniques	in	his	Vibrations	III	course	notes	from	the	University	of	Cincinnati.	

The	 Complex	 Mode	 Indicator	 Function	 (CMIF)	 based	 parameter	 estimation	 is	 one	

technique	 that	 has	 been	 successfully	 used	 to	 extract	 the	 dynamic	 characteristics	 from	

bridge	vibration	measurements	and	to	 identify	modal	 flexibility	(Catbas,	Brown,	&	Aktan,	

2004).	 	Given	 that	 the	CMIF	algorithm	has	a	well‐documented	application	history	 for	 the	

dynamic	 characterization	 of	 bridges,	 it	 was	 selected	 as	 the	 primary	 modal	 parameter	

estimation	 technique	 that	 would	 be	 used	 for	 the	 post‐processing	 of	 the	 dynamic	
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measurements	 obtained	 from	 this	 research.	 The	 CMIF	 algorithm	 is	 often	 combined	with	

another	algorithm,	the	Enhanced	Frequency	Response	Function	(eFRF),	to	accurately	scale	

the	mode	shape	vectors.	This	is	a	critical	step	for	obtaining	an	accurate	estimate	of	modal	

flexibility.	These	two	algorithms	were	combined	and	coded	in	MATLAB,	and	implemented	

with	 additional	 data	 processing	 procedures	 to	 identify	 the	 dynamic	 characteristics	 and	

modal	flexibility	of	the	laboratory	grid	model.	The	details	of	the	data	processing	approach	

are	further	described	in	the	following	sections.	

3.1 DATA	POST	PROCESSING	TECHNIQUES	USED	

In	order	to	minimize	the	inherent	variations	associated	with	the	use	of	different	post‐

processing	techniques,	only	one	method	was	used	to	process	the	vibration	measurements	

from	this	research	project.		The	flowchart	shown	in	Figure	3.1	provides	an	overview	of	the	

flow	of	all	dynamic	tests	performed	and	the	processing	steps	required	to	obtain	the	modal	

parameters,	 which	 then	 lead	 to	 modal	 flexibility.	 	 The	 details	 of	 each	 step	 are	 further	

described	in	the	following	sections.	
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Figure	3.1:	Post	Processing	Flow	Chart	

	

3.1.1 Input	and	Response	Measurements	

Both	input	and	response	data	were	collected	in	the	time	domain	using	a	sampling	rate	

of	1,000	Hz.		As	noted	earlier,	dynamic	inputs	including	impact	testing,	shaker	testing,	and	

ambient	 testing	 were	 used	 in	 order	 to	 compare	 the	 differences	 between	 the	 results	 of	

different	 tests.	 	 It	was	 important	 to	accurately	capture	 the	 initial	equilibrium	state	of	 the	

structure	before	 the	controlled	dynamic	excitation	was	applied	 to	 the	structure,	and	was	

accomplished	by	setting	the	DAQ	unit	to	acquire	data	30	time	steps	before	the	trigger.		The	

force	data	from	the	instrumented	hammer	had	some	non‐zero	terms	away	from	the	pulse	

input,	 which	 were	 filtered	 out	 before	 continuing	 since	 these	 non‐zero	 terms	 were	 not	

actually	 forces	 applied	 to	 the	 structure.	 	 The	 response	data	were	de‐trended	 around	 the	

zero	axis	 in	order	to	remove	any	DC	offset.	 	With	shaker	testing,	no	filtering	was	applied,	
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but	 the	 data	was	 still	 de‐trended.	 	 In	 the	 case	 of	 ambient	 vibration	 testing,	 the	 dynamic	

excitation	was	 un‐measurable,	 and	 the	measured	 responses	were	 processed	 in	 a	 slightly	

different	 manner.	 The	 specific	 procedures	 used	 for	 processing	 the	 ambient	 vibration	

measurements	are	described	in	Section	5.4.		

3.1.2 Convert	Time	Domain	Data	to	Frequency	Domain	Data		

The	input	and	response	data	were	recorded	in	the	time	domain.		To	compute	frequency	

response	functions	from	the	time	domain	data,	the	data	must	first	be	transformed	into	the	

frequency	 domain.	 The	 most	 common	 and	 direct	 approach	 to	 accomplish	 this	 was	 to	

employ	the	Fast	Fourier	Transform.		This	was	easily	implemented	in	MATLAB.	

3.1.3 Auto	and	Cross	Power	Spectra	

The	frequency	domain	data	were	used	to	compute	cross	power	spectra	and	auto	power	

spectra.	Averaging	of	the	multiple	data	sets	was	also	taken	care	of	in	this	stage.		As	noted	by	

Allemang	 (1999),	 using	 several	 averages	will	 reduce	 errors	 from	noise	 and	 leakage,	 and	

will	 result	 in	better	 coherence.	These	 effects	were	observed	 for	 the	 grid	model	 test	 data	

when	multiple	averages	were	computed.		

The	 expressions	 that	 were	 used	 to	 compute	 the	 cross	 power	 spectra	 are	 shown	 in	

Equations	 (3.1)	 and	 (3.2).	 The	 expressions	 that	were	used	 for	 computing	 the	 autopower	

spectra	are	given	in	Equations	(3.3)	and	(3.4).		

	 
avgN

pqqp XFGFX
1

*

	
	(3.1)	
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avgN

qppq FXGXF
1

*

	

	(3.2)	

	


avgN

pppp XXGXX
1

*

	

	(3.3)	

	


avgN

qqqq FFGFF
1

*

	

	(3.4)	

where		

	 F	=	input	force	spectrum	(in	frequency	domain).	

	 X	=	response	spectrum	(in	frequency	domain).	

	 p	is	the	output	Degree	of	Freedom	(DOF).	

	 q	is	the	input	DOF.	

	 Navg	=	number	of	averages	used	in	the	data	set.	

	 *	denotes	the	complex	conjugate	of	the	spectra.	

	 G	refers	to	one	sided	spectrum.	

	

3.1.4 Frequency	Response	Functions		

Two	 different	 methods	 were	 used	 to	 compute	 frequency	 response	 functions	 (FRFs)	

from	the	measured	data,	namely	the	H1	algorithm	and	the	H2	algorithm.	The	H1	algorithm,	

shown	in	Eq.	(3.5),	is	the	most	common	formulation	of	the	FRF,	and	tends	to	minimize	the	

noise	 on	 the	 output	measurements.	 Another	 formulation	 of	 the	 FRF	 is	 the	H2	 algorithm,	
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shown	 in	 Eq.	 (3.6),	 which	 tends	 to	 minimize	 the	 noise	 on	 the	 input	 measurement	

(Allemang,	1999).	 	The	FRFs	generated	by	each	of	these	algorithms	were	plotted	together	

and	evaluated	to	make	sure	that	no	extraneous	noise	was	present	in	either	the	response	or	

input	 measurements.	 Ultimately,	 the	 H1	 method	 was	 used	 for	 the	 singular	 value	

decomposition	and	CMIF	algorithm.			

	
qq

pq
pq GFF

GXF
H 1

	
	(3.5)	

	

qp

pp
pq GFX

GXX
H 2

	

	(3.6)	

where	

	 GXF	and	GFX	are	the	cross	power	spectra.	

	 GFF	and	GXX	are	the	autopower	spectra.	

	

Since	 the	 response	 data	 consisted	 of	 accelerations,	 the	 resulting	 FRF	 is	 known	 as	

“inertance,”	 or	A/F	 (acceleration	 spectrum	divide	by	 force	 spectrum).	 	 Each	 spectral	 line	

was	 then	 divided	 by	 jω2	 in	 order	 to	 convert	 the	 acceleration	 data	 into	 the	 displacement	

data	 and	 the	 resulting	 FRF	 is	 known	 as	 “receptance,”	 or	 X/F	 (displacement	 spectrum	

divided	by	force	spectrum).	
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3.1.5 SVD	of	FRF	and	Computation	of	CMIF	Spectrum		

The	 FRF	matrix,	 designated	 by	H(ω),	was	 computed	 using	 the	H1	method	with	 each	

location	in	the	matrix	representing	an	input	(column)	location	and	output	(row)	location.		

In	order	to	obtain	the	Complex	Mode	Indicator	Function	(CMIF)	spectrum,	the	FRF	matrix	

is	decomposed	at	every	frequency	line.	 	The	most	efficient	approach	for	decomposing	the	

FRF	 is	 Singular	 Value	 Decomposition	 (SVD)	 at	 each	 spectral	 line	 (Allemang	 &	 Brown,	

2006).	 	 The	 CMIF	 method	 is	 different	 from	 other	 algorithms	 in	 the	 sense	 that	 a	 good	

estimate	 of	 the	 number	 of	 modes	 in	 a	 given	 frequency	 interval	 is	 needed,	 and	 is	

accomplished	by	plotting	the	singular	values,	S(ω),	of	the	FRF	matrix	at	each	spectral	line	

(Catbas	et	al.,	2004).		SVD	can	be	described	at	each	spectral	line,	ω,	by	Eq.	(3.7).	

	        H xNNxNNxNNxNN iiiiioio
VSUHimag )()()())((  

	 	(3.7)	

where	

	 ‘imag’	refers	to	the	imaginary	part	of	the	matrix.	

	 U(ω)	=	left	singular	vectors.	

	 H(ω)	=	right	singular	vectors.	

	 No	=	number	of	outputs.	

	 Ni	=	number	of	inputs.	

	 small	H	denotes	the	Hermitian	transpose.	
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Employing	 SVD	on	 the	 imaginary	 part	 of	 the	 FRF	plot	 produces	 real‐valued	 singular	

vectors,	 which	 are	 easier	 to	 interpret	 and	 use	 for	 identifying	 modal	 frequencies.	 	 The	

singular	 values	 can	 then	 be	 plotted	 over	 the	 entire	 frequency	 band	 of	 interest.	 	 CMIF	

spectra	 generated	 using	 4	 different	 input	 DOFs	 from	 the	 cantilever	 model	 is	 shown	 in	

Figure	3.2.	 	 It	can	be	observed	from	this	figure	that	a	separate	singular	value	spectrum	is	

produced	for	each	input	location	utilized	in	the	CMIF	formulation.		

The	peaks	 in	 the	CMIF	 spectra	 represent	possible	modes	of	 the	 system.	 It	 should	be	

noted	 that	 experimental	 error	 and	 other	 factors	 can	 lead	 to	 spurious	 peaks	 in	 the	 CMIF	

spectra	that	are	not	natural	modes	of	the	structure.	An	automated	peak‐picking	algorithm	

was	implemented	for	the	CMIF	spectra	as	shown	in	Figure	3.2.	The	peaks	corresponding	to	

possible	 modes	 of	 the	 structure	 have	 been	 circled,	 while	 the	 spurious	 peaks	 have	 been	

identified	by	a	star	and	were	not	used	in	further	processing.		
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Figure	3.2:	CMIF	Plot	for	Cantilever	Model	using	4	Input	DOFs	

3.1.6 Mode	Shapes	and	Natural	Frequencies		

Modal	parameter	estimation	using	the	CMIF	method	is	a	two‐stage	approach,	with	the	

first	stage	estimating	the	spatial	information,	or	modal	vectors	(Phillips	&	Allemang,	1998).		

Besides	producing	a	clear	plot	of	the	possible	locations	of	modes	of	the	structure,	singular	

value	 decomposition	 provides	 approximate	mode	 shape	 vectors	 at	 every	 frequency	 line.	

The	approximate	mode	shape	vectors	at	any	 frequency	 line	are	 found	 in	 the	 left	 singular	

vectors,	U(ω).		By	taking	the	left	singular	vector	at	the	same	spectral	line	corresponding	to	

a	peak	in	the	CMIF	spectra,	one	can	plot	that	vector	to	obtain	a	visual	representation	of	the	

mode	 shape.	 	 Since	 the	mode	 shapes	 that	 contribute	 to	 each	 peak	 do	 not	 change	much	

around	each	peak,	any	given	number	of	spectral	lines	around	the	peak	of	interest	may	give	

the	same	shape	(Allemang	&	Brown,	2006).		These	mode	shapes	are	important	for	verifying	

the	resonant	vibration	modes	of	the	structure,	but	in	this	form	have	arbitrary	scaling	and	
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will	not	produce	an	accurate	estimate	of	modal	flexibility.	 	Therefore,	scaling	of	the	mode	

shapes	is	important,	and	is	found	in	the	second	stage	of	the	CMIF	method.	

3.1.7 Compute	Enhanced	FRF	(eFRF)		

The	 second	 stage	 of	 parameter	 estimation	 estimates	 the	 temporal	 information,	 or	

modal	 frequencies	and	modal	scaling	(Phillips	&	Allemang,	1998).	 	These	parameters	are	

found	through	the	creation	of	an	Enhanced	Frequency	Response	Function,	or	eFRF,	which	

decouples	 the	MDOF	 system	 into	 a	 series	 of	 SDOF	 systems.	 	 The	 eFRF	utilizes	 the	mode	

shape	 vector	 U(ω)	 as	 a	 modal	 filter	 to	 represent	 the	 overall	 FRF	 as	 a	 single	 degree	 of	

freedom	system	for	each	mode.	 	In	order	to	get	the	correct	scaling	for	the	eFRF,	a	scaling	

vector	created	from	the	left	and	right	singular	vectors	is	used.		The	H(ω)	matrix	is	then	pre‐	

and	post‐multiplied	by	the	corresponding	filter	and	scaling	vectors	at	each	frequency	line	

to	 obtain	 the	 eFRF,	 as	 seen	 below	 (Phillips	 &	 Allemang,	 1998;	 Catbas,	 Brown,	 &	 Aktan,	

2004).			
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	(3.8)	

where	r	 is	 the	mode	of	 interest.	 	u	 is	 the	modal	 filter	vector,	 taken	as	a	column	from	

U(w)	 corresponding	 to	 the	 singular	 value	 chosen.	 	 vsc	 is	 the	modal	 scaling	 vector,	where	

‘pinv’	 is	the	pseudo‐inverse	of	the	matrix,	and	‘dpt’	are	the	driving	points	of	the	structure.		

The	transpose	of	u	is	denoted	as	with	a	small	T.		

To	better	illustrate	this	concept,	Figure	3.3	shows	a	CMIF	spectra	containing	8	separate	

modes,	then	shows	the	corresponding	eFRF	for	the	first	3	modes	(or	peaks)	in	the	CMIF.			
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Figure	3.3:	Decoupling	Modes	with	eFRF	Creation	
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3.1.8 Calculate	Modal	Parameters		

Once	the	eFRF	was	obtained,	a	least	squares,	curve	fitting	algorithm	was	used	to	fit	a	

curve	to	 the	peak	 in	each	eFRF.	 	The	 least	squares	estimation	produces	a	complex	modal	

frequency,	containing	frequency	and	damping,	for	each	mode	(Allemang,	1999).	
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	(3.9)	

where	

	 ωp	=	frequency	of	the	peak	of	interest.	

	 ω1	–	ωs	=	frequencies	above	and	below	the	peak	of	interest.	

	 λr	=	complex	modal	frequency	for	each	mode	r.	

	

The	 above	 over	 determined	 set	 of	 linear	 equations	was	 then	 solved	using	 a	 pseudo‐

inverse	approach	to	solve	for	the	complex	modal	frequency.		The	scaling	factor	(Modal	A)	

was	found	in	a	similar	manner.		This	factor	is	important	because	it	allows	the	modal	vectors	

to	be	mass	unit	normalized	without	assuming	a	mass	matrix,	thereby	allowing	the	proper	

scaling	of	the	modal	flexibility	matrix	(Catbas,	Brown,	&	Aktan,	2004).		

	 )(*** 21 ApinvBssM
rA  	

	(3.10)	

where	
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	 MAr	=	scaling	factor	(Modal	A)	for	each	mode	r.	

	 r
T

rs  *1  	

	 sc
T

r vdpts *)(2  	

	

























)(

)(

)(

)(

2

1

s

p

eFRF

eFRF

eFRF

eFRF

A









	 	

	

 
 
 

 



































rs

rp

r

r

j

j

j

j

B









1

1

1

1

2

1



	

	 ϕr	=	mode	shape	vector	for	each	mode	r.	

	

3.1.9 Compute	Modal	Flexibility		

The	modal	parameters	 found	 in	 the	previous	 steps	 are	 then	 combined	 to	 find	modal	

flexibility,	the	end	goal	of	the	data	analysis.		Modal	flexibility	was	selected	as	the	result	that	

would	be	used	to	compare	 the	different	characterization	approaches	used	 in	 this	project.	

Modal	flexibility,	MF,	is	defined	by	Catbas,	Brown,	and	Aktan	(2006)	as	shown	in	Eq.	(3.11):	
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	(3.11)	

where	

	 r 	=	mode	shape	vector	for	mode	r.	

	
rAM =	modal	A	for	mode	r.	

	 r 	=	complex	modal	frequency	for	mode	r.	

	 ‘conj’	denotes	the	complex	conjugate	of	the	value.	

	

It	is	important	to	note	that	modal	flexibility	is	an	approximation	of	the	actual	flexibility	

for	 a	 structure,	 and	 is	 subject	 to	 uncertainty	 since	 it	 is	 derived	 from	measurement	 data.		

Experimental	data	always	contains	some	amount	of	error	and	noise	that	can	lead	to	some	

differences	 between	 the	 estimated	modal	 flexibility	 and	 the	 actual	 flexibility	 for	 a	 given	

structure.	 	 The	 parameters	 used	 to	 calculate	modal	 flexibility	 (modal	 frequencies,	modal	

vectors,	Modal	 A)	 are	 affected	 by	 the	 quality	 of	 the	measurement	 data	 used	 to	 estimate	

them.	 Finally,	 the	 modal	 flexibility	 equation	 contains	 a	 summation	 over	 the	 number	 of	

modes	observed.		The	exact	flexibility	for	most	structures	would	be	the	summation	over	an	

infinite	 number	 of	 modes.	 Using	 only	 a	 subset	 of	 these	 modes	 to	 determine	 the	 modal	

flexibility	will	never	provide	an	exact	estimate	of	the	actual	structural	flexibility.	That	being	

said,	 if	 enough	 modes	 are	 used	 in	 the	 summation,	 a	 very	 close	 approximation	 of	 the	

flexibility	 of	 the	 structure	 can	 be	 obtained.	 Fortunately,	 the	 dynamic	 response	 of	 most	
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structures	is	largely	determined	by	its	first	few	fundamental	modes.	Furthermore,	the	error	

in	the	modal	flexibility	identified	from	a	finite	number	of	modes	is	likely	to	be	less	than	the	

uncertainty	 levels	 associated	 with	 the	 in‐situ	 mechanical	 characteristics	 of	 constructed	

systems.		

3.2 VERIFICATION	OF	THE	CMIF	ALGORITHM	–	VIRTUAL	IMPACT	TEST	

The	 author	 developed	 coding	 to	 implement	 the	 CMIF	 algorithm	 and	 to	 find	 modal	

flexibility	in	MATLAB.		In	order	to	validate	the	coding	and	to	verify	that	the	results	obtained	

were	correct	and	accurate,	a	benchmark	evaluation	of	the	data	processing	procedures	was	

performed.	 	 This	 was	 accomplished	 by	 applying	 the	 code	 to	 mathematically	 generated	

input	 and	 response	 time	domain	data	 for	 a	 structural	 system	having	known	parameters.	

The	resulting	virtual	impact	test	data	contained	no	experimental	noise	or	errors	that	could	

corrupt	 the	modal	 parameter	 identification	 results	 or	 the	modal	 flexibility	 estimate.	 The	

simulated	dynamic	response	data	was	generated	for	a	cantilever	beam	structure	with	well‐

defined	 geometric,	 section	 and	 material	 properties.	 The	 cantilever	 beam	 structure	 was	

idealized	 as	 a	 4	 translational	 degree‐of‐freedom	 (DOF)	 system	with	mass	 lumped	 at	 the	

nodes.	 The	 flexibility	 matrix	 was	 computed	 for	 the	 cantilever	 beam	 using	 closed‐form	

deflection	equations	available	in	the	AISC	Manual	of	Steel	Construction	(AISC,	2005).	If	the	

CMIF	algorithm	was	implemented	properly,	the	modal	flexibility	identified	from	the	virtual	

impact	test	data	would	very	closely	match	the	flexibility	 found	from	deflection	equations.		

The	properties	of	 the	cantilever	beam	structure	used	for	 the	virtual	 impact	 test	were	the	

same	as	the	experimental	model,	and	are	summarized	in	Ch.	4.		
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A	numerical	procedure	was	used	to	generate	the	dynamic	response	data	at	each	DOF	

due	to	a	simulated	impact	at	one	DOF	on	the	structure.	The	numerical	procedure	used	for	

the	simulation	was	based	on	linear	interpolation	of	the	excitation	over	each	time	interval	as	

developed	 by	 Chorpa	 (2007).	 This	 numerical	 method	 is	 applicable	 to	 linear	 structures,	

which	was	assumed	to	be	the	case	for	the	cantilever	beam.	The	dynamic	response	due	to	an	

arbitrary	 excitation	 is	 computed	 by	 implementing	 recurrence	 equations	 at	 discrete	 time	

steps.	 The	 recurrence	 equations	 are	 derived	 from	 the	 exact	 solution	 to	 the	 equation	 of	

motion	 for	an	underdamped,	single	degree	of	 freedom	(SDF)	system	(Chopra,	2007),	and	

provide	the	displacement	and	velocity	of	the	system	at	each	time	step	used	in	the	analysis.	

Because	the	recurrence	equations	are	only	applicable	to	SDF	systems,	modal	analysis	was	

first	used	to	uncouple	the	equations	of	motion	for	the	4	DOF	cantilever	beam	and	transform	

the	 excitation	 and	 responses	 into	 modal	 coordinates.	 The	 numerical	 evaluation	 was	

executed	 in	 modal	 coordinates	 and	 modal	 superposition	 was	 used	 to	 obtain	 the	 total	

response	at	each	DOF.	The	total	response	at	each	DOF	was	subsequently	transformed	back	

into	physical	coordinates	to	obtain	the	displacement	and	velocity	records.	The	recurrence	

equations	used	to	compute	the	displacement	and	velocity	of	a	SDF	system	are	given	by	Eq.	

(3.12)	and	(3.13),	respectively.	The	coefficients	in	these	equations	are	summarized	in	Table	

3.1:	

	 11   iiiii DpCpuBAuu 
	 	(3.12)	

	 11 ''''   iiiii pDpCuBuAu  	
	(3.13)	

where		
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	 u	is	the	displacement.	

	 u 	is	the	velocity.	

	 p	is	the	forcing	function.	

	 i	is	the	current	time	step.	

The	dynamic	excitation	applied	to	the	cantilever	beam	was	a	virtual	impact	force	that	

was	simulated	by	a	half‐cycle	 sine	wave	with	a	peak	amplitude	of	10	 lbf.	 	The	 frequency	

response	of	the	impact	force	varies	with	the	time	duration	of	the	impulse.	An	impact	force	

having	a	longer	time	duration	will	lead	to	a	dynamic	excitation	with	a	more	narrow	band	in	

the	 frequency	domain	 than	 an	 impact	 force	with	 a	 shorter	 time	duration.	 The	 frequency	

band	associated	with	the	dynamic	excitation	is	important	as	only	the	normal	modes	of	the	

structure	that	are	located	within	the	same	frequency	band	of	the	excitation	will	contribute	

significantly	 to	 the	 dynamic	 response	 of	 the	 structure.	 Ideally,	 the	 time	 duration	 of	 the	

impact	 force	 would	 approach	 zero	 imparting	 a	 pure	 unit	 impulse	 load	 to	 the	 structure.		

Because	the	actual	impact	force	provided	by	the	instrumented	hammer	was	expected	to	be	

somewhere	 in	between	a	pure	 impulse	 force	and	a	half‐cycle	 sine	wave	pulse,	 an	 impact	

force	 time	 record	 from	 an	 instrumented	 impact	 hammer	 was	 analyzed	 to	 determine	 a	

realistic	pulse	time	duration.	The	data	from	the	instrumented	impact	hammer	revealed	that	

a	 time	 duration	 of	 0.003	 seconds	would	 represent	 a	 reasonable	 simulation	 of	 the	 actual	

impact	 force	 supplied	 by	 the	 instrumented	 impact	 hammer.	 	 Figure	 3.4	 compares	 the	

simulated	impact	force	used	for	the	numerical	analysis	and	an	actual	 impact	force	record	

from	the	instrumented	hammer.		From	this	plot,	it	can	be	seen	that	more	energy	was	input	
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into	 the	structure	 from	the	virtual	 impact	 test,	both	due	 to	 the	amplitude	and	due	 to	 the	

shape	of	the	impact.				

	

Table	3.1:	Coefficients	in	Recurrence	Equations	(from	Chorpa,	2007)	

	
	

Three	different	tests	were	performed	virtually	on	the	cantilever	beam	structure,	with	

each	test	placing	the	dynamic	excitation	at	the	tip	DOF	only.		The	first	test	used	an	impact	

time	 duration	 of	 0.003	 seconds	 based	 on	 the	 analysis	 described	 above	 and	 also	 utilized	

Rayleigh	damping	coefficients	which	ranged	from	2%	in	the	1st	mode	to	7%	in	the	4th	mode.		

The	second	virtual	 impact	 test	utilized	 the	same	damping	coefficients,	but	 the	pulse	 time	
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duration	was	changed	to	0.001	seconds.		This	test	resulted	in	less	displacement	at	the	tip	of	

the	cantilever	due	to	less	energy	being	imparted	to	the	structure.		The	third	test	performed	

used	 an	 impact	 time	 duration	 of	 0.003	 seconds	 but	 utilized	 a	 constant	 damping	 of	 5%	

across	all	4	modes.		Figure	3.5	shows	the	displacement	at	the	tip	due	to	these	two	different	

damping	cases.			

	

	
Figure	3.4:	Virtual	Impact	vs.	Actual	Impact	

	

	
Figure	3.5:	Tip	Displacement	due	to	Virtual	Impact	at	DOF1	(Mode	1)	
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As	expected,	the	peak	dynamic	response	was	definitely	affected	by	the	time	duration	of	

the	 simulated	 impact	 force.	 	When	 the	 longer	 time	duration	used	 for	 the	 impact	 force,	 a	

larger	maximum	deflection	resulted	at	the	free	end	of	the	cantilever	beam.	A	nearly	exact	

simulation	 of	 the	 impact	 force	 and	 dynamic	 response	 for	 the	 cantilever	 beam	 could	 be	

created	by	additional	modifications	to	the	impact	time	duration,	the	damping	ratio	for	each	

mode,	and	 the	shape	of	 the	 impact	 force	 time	record,	but	 this	 is	beyond	 the	scope	of	 the	

benchmark	evaluation	study.	The	benchmark	evaluation	of	the	virtual	impact	test	did	show	

that	 the	 algorithms	 implemented	 in	 MATLAB	 could	 accurately	 estimate	 the	 modal	

parameters	 and	 modal	 flexibility	 for	 a	 structure.	 As	 shown	 in	 Table	 3.2,	 the	 modal	

flexibilities	 computed	 for	 each	 virtual	 impact	 test	 were	 very	 close	 to	 the	 flexibility	

computed	 for	 the	 cantilever	beam	 from	closed‐form	deflection	equations.	Also,	when	 the	

modal	flexibility	matrices	derived	from	the	virtual	impact	tests	are	multiplied	by	a	uniform	

load	 vector,	 the	 resulting	 deflected	 shapes	 for	 the	 cantilever	 beam	 are	 very	 close	 to	 the	

deflected	shape	computed	from	closed‐form	deflection	equations	for	the	same	load	pattern,	

as	shown	in	Figure	3.6.	 	Finally,	 the	natural	 frequencies	 located	by	the	peaks	 in	the	CMIF	

spectrum	computed	from	the	simulated	dynamic	response	data	(Figure	3.7)	are	the	same	

as	the	natural	frequencies	computed	by	solving	the	characteristic	matrix	of	the	cantilever	

beam	(see	Table	3.3).			
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Table	3.2:	Virtual	Impact	Test	Results	
	

Analytical	Static	Flexibility	 	 Modal	Flexibility	‐	Test	#1	
	 0.07193	 0.04552	 0.02248	 0.00618 0.07163 0.04532 0.02238	 0.00615	
	 0.04552	 0.03034	 0.01573	 0.00450 0.04532 0.03042 0.01552	 0.00465	
	 0.02248	 0.01573	 0.00899	 0.00281 0.02238 0.01552 0.00910	 0.00265	
	 0.00618	 0.00450	 0.00281	 0.00112 0.00615 0.00465 0.00265	 0.00131	
	
	 Analytical	Static	Flexibility	 Modal	Flexibility	‐	Test	#2	
	 0.07193	 0.04552	 0.02248	 0.00618 0.07163 0.04532 0.02238	 0.00615	
	 0.04552	 0.03034	 0.01573	 0.00450 0.04532 0.02869 0.01705	 0.00285	
	 0.02248	 0.01573	 0.00899	 0.00281 0.02238 0.01705 0.00774	 0.00424	
	 0.00618	 0.00450	 0.00281	 0.00112 0.00615 0.00285 0.00424	 0.00055	
	
	 Analytical	Static	Flexibility	 Modal	Flexibility	‐	Test	#3	
	 0.07193	 0.04552	 0.02248	 0.00618 0.07285 0.04612 0.02279	 0.00627	
	 0.04552	 0.03034	 0.01573	 0.00450 0.04612 0.03073 0.01593	 0.00455	
	 0.02248	 0.01573	 0.00899	 0.00281 0.02279 0.01593 0.00908	 0.00284	
	 0.00618	 0.00450	 0.00281	 0.00112 0.00627 0.00455 0.00284	 0.00112	
	 		 		 		 		 		

	



45	

	

	
Figure	3.6:	Vertical	Deflection	from	Virtual	Impact	Test	Results	
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Figure	3.7:	CMIF	Plot	from	Virtual	Impact	Test	Results	

		

	

Table	3.3:	Natural	Frequencies	Comparison	for	Virtual	Impact	Test	
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4. CHARACTERIZATION	OF	A	CANTILEVER	BEAM	MODEL	

Laboratory	 testing	 of	 physical	 models	 is	 an	 efficient	 and	 effective	 approach	 for	

identifying	and	mitigating	the	errors	associated	with	a	given	experimental	characterization	

approach	 and	 for	 validating	 data	 processing	 and	 analysis	 procedures.	 A	 laboratory	

evaluation	program	was	developed	and	executed	for	a	cantilever	beam	structure	as	part	of	

this	research	program	to	serve	a	number	of	objectives:	

1. To	 evaluate	 and	 validate	 the	 sensors	 and	 data	 acquisition	 devices	 that	 would	 be	

used	for	dynamic	characterization	of	the	grid	model	structure	and	in‐service	bridge	

structures.	

2. To	 determine	 the	 most	 effective	 configuration	 and	 use	 of	 the	 available	 data	

acquisition	 hardware	 and	 software	 for	 static	 and	 dynamic	 characterization	 of	

constructed	systems.	

3. To	 identify,	 validate,	 and	 evaluate	 the	 data	 processing	 and	 analysis	 approaches	

needed	 to	 characterize	 the	 dynamic	 characteristics	 of	 in‐service	 constructed	

systems.	

A	 small	 scale,	 steel	 cantilever	 beam	 model	 was	 selected	 for	 use	 in	 this	 evaluation	

because	 it	 a	 very	 simple	 structure	 and	 there	 is	 a	 relatively	 low	 amount	 of	 uncertainty	

associated	 with	 its	 analytical	 and	 experimental	 characterization	 compared	 to	 in‐service	

constructed	 systems,	which	 generally	 feature	more	 complex	 structural	 systems,	material	

characteristics,	 loadings,	 and	 existing	 deterioration	 and	 damage	 characteristics.	 The	
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cantilever	 beam	 model	 is	 a	 statically	 determinate	 structure	 and	 its	 static	 and	 dynamic	

responses	can	be	readily	described	using	very	basic	mechanics	principles.		

The	 cantilever	 beam	 model	 was	 characterized	 using	 several	 different	 analytical	

approaches	in	addition	to	the	experimental	methods	to	provide	a	baseline	characterization	

that	could	be	compared	with	the	static	and	dynamic	test	results.	The	dynamic	response	of	

the	cantilever	beam	was	characterized	analytically	using	mathematical	equations	of	motion	

for	both	uniform	and	lumped‐mass	models	implemented	in	MATLAB.		The	model	was	also	

characterized	 using	 the	 commercially	 available	 structural	 analysis	 program	 SAP2000	 to	

provide	another	independent	point	of	comparison.		The	analytical	characterization	results	

for	 the	 cantilever	 beam	 provided	 several	 baseline	 descriptions	 of	 the	 cantilever	 beam	

model	employing	different	levels	of	idealization,	and	these	descriptions	served	to	aid	in	the	

design	of	the	experimental	characterization	program	and	as	rational	limits	for	the	results	of	

the	experimental	characterization	program.	

4.1 PHYSICAL	AND	MECHANICAL	CHARACTERISTICS	OF	THE	MODEL	

The	cantilever	beam	structure	evaluated	and	discussed	in	this	Chapter	was	constructed	

from	a	single	20	ft.	long	piece	of	hollow	structural	steel	(HSS	3x2x	3/16)	that	was	oriented	

for	bending	about	its	weak	axis.	The	section	was	made	of ASTM	A500	Grade	B	steel,	which	

has	a	yield	strength	of	46	ksi	and	a	tensile	strength	of	58	ksi.		The	beam	was	clamped	and	

bolted	 to	 the	 top	of	 a	 3	 ft.	 tall	 steel	 support	pedestal	whose	 base	was	 anchored	 into	 the	

concrete	floor	slab.	The	resulting	span	length	of	the	cantilever	beam,	as	measured	from	the	
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clamped	end	to	the	free	end,	was	15	ft.	Figure	4.6	shows	a	picture	of	the	cantilever	beam	

model	as	constructed	in	the	laboratory	and	a	picture	of	its	clamped	support.	

The	relevant	section	and	material	properties	of	the	cantilever	beam	that	were	used	for	

the	analytical	characterizations	described	in	subsequent	sections	are	summarized	in	Table	

4.1.	

Table	4.1:	Properties	of	the	Cantilever	Beam	Model	
	 Parameter	 Value	
	 Modulus	of	Elasticity,	E	 29,000	ksi	
	 Cross	Sectional	Area,	A	 1.54	in2	
	 Moment	of	Inertia,	I	 0.932	in4	
	 Section	Modulus,	S	 0.932	in3	
	 Shear	Area	 N/A	(Bernoulli	Beam	Assumed)	
	 Weight	Density,		 490	lb/ft3	

	

	

4.2 ANALYTICAL	CHARACTERIZATION	OF	THE	CANTILEVER	BEAM	MODEL	

The	 cantilever	 beam	 model	 described	 in	 the	 previous	 section	 was	 characterized	

analytically	using	two	separate	approaches.	The	first	approach	involved	solving	the	partial	

differential	 equation	 governing	 the	 dynamics	 of	 a	 uniform	 cantilever	 beam.	 The	 second	

approach	involved	constructing	and	analyzing	an	analytical	model	of	the	beam	in	SAP2000,	

a	 commercially	 available	 structural	 analysis	 software	 package.	 The	 details	 of	 these	

analytical	characterizations	are	further	described	in	the	following	sections.		
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4.2.1 Partial	Differential	Equation	Analysis	

The	 cantilever	 beam	 physical	model	 is	 a	 system	with	 uniformly	 distributed	mass	

and	 stiffness	 parameters.	 Given	 that	 the	 mass	 of	 the	 accelerometers	 installed	 on	 the	

physical	model	for	the	experimental	testing	were	very	small	relative	to	the	total	mass	of	the	

cantilever	beam,	it	is	quite	reasonable	to	expect	that	the	measured	dynamic	responses	for	

model	should	match	the	responses	predicted	by	the	solution	of	the	equation	of	motion	for	a	

cantilever	beam	with	uniformly	distributed	mass	and	stiffness	reasonably	well.		

The	 partial	 differential	 equation	 (PDE)	 governing	 the	 transverse	 free	 vibration	

response	u(x,	 t)	 of	 a	beam	with	distributed	mass	and	stiffness	 can	be	 shown	 to	have	 the	

following	form	(Craig	&	Kurdila,	2006):	

	     0
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2
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	(4.1)	

	

where	  xm 	 is	 the	distributed	mass	and	  xEI 	 is	 the	distributed	flexural	rigidity,	u	 is	

the	vertical	displacement,	t	is	time,	and	x	is	the	distance	from	the	point	of	reference.		Since	

the	 mass	 and	 stiffness	 of	 the	 cantilever	 beam	 model	 are	 assumed	 to	 be	 uniformly	

distributed	along	its	length	of	the	beam,	the	mass	and	flexural	rigidity	terms	in	Eq.	(3.7)	can	

be	 replaced	by	  xm 	 =	m	 and	  xEI 	 =	EI.	 	 It	 should	be	noted	 that	 the	 above	 equation	 is	

based	 on	 Euler‐Bernoulli	 beam	 theory	 and	 therefore	 excludes	 the	 effects	 of	 shear	

deformation.		
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The	general	solution	of	the	above	equation	is	assumed	to	have	the	form:	

	
	
	

)cos()sin()cosh()sinh()( 4321 xCxCxCxCxU   	 	(4.2)	

where	C1	through	C4	are	constants	and	β4=ω2m/EI.	The	constants	C1	through	C4	can	be	

determined	 by	 evaluating	 the	 boundary	 conditions	 for	 a	 fixed	 end	 cantilever	 beam.	

Substituting	 these	 constants	 into	 Eq.	 (4.2)	 and	 simplifying	 yields	 the	 characteristic	

equation:	

	 01coshcos LL 
	(4.3)	

The	roots	of	the	characteristic	equation	are:	

	 996.10,8548.7,6941.4,8751.1 andLn  	for	n	=	1,	2,	3,	4	 	(4.4)	

	
2

)12(
  nLn 			for	n	>	4	 	(4.5)	

The	circular	natural	frequencies	(n)	are	then	given	by	the	following	expression:	

	
m

EI

L
n

n 2

2  				for	n	=	1,	2,	3,	4,	etc.	
	(4.6)	

where	m	 is	 the	mass	 per	 unit	 length,	L	 is	 the	 span	 length	 of	 the	 beam,	E	 is	 Young’s	

Modulus,	 and	 I	 is	 the	 moment	 of	 inertia	 for	 the	 beam	 section.	 The	 mode	 shapes	 n 	

corresponding	to	the	natural	frequencies	can	then	be	computed	by	(Craig	&	Kurdila,	2006):	
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where	C	is	an	arbitrary	constant.	
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The	 transverse	 natural	 frequencies	 and	mode	 shapes	 for	 the	 cantilever	 beam	model	

were	 computed	 for	 the	 first	 8	 modes	 using	 the	 previous	 equations.	 The	 results	 are	

tabulated	as	cyclic	natural	frequencies	(Hz)	and	were	used	as	a	basis	for	comparison	with	

the	dynamic	characterization	results	obtained	from	the	SAP2000	analytical	model	and	the	

dynamic	 testing.	 The	 mode	 shapes	 associated	 with	 the	 first	 four	 natural	 frequencies	

computed	 from	 the	 partial	 differential	 equation	 solution	 are	 shown	 in	 Figure	 4.1.	 For	

clarity	purposes,	 the	mode	 shapes	were	 computed	and	plotted	at	64	discrete	points	 that	

were	evenly	distributed	along	the	 length	of	the	cantilever	beam.	The	mode	shape	vectors	

were	also	unit	normalized	such	that	the	largest	element	in	each	modal	vector	had	a	value	of	

one.	

	

	
Figure	4.1:	Transverse	Mode	Shapes	Computed	from	the	PDE	Solution	

	

0 20 40 60 80 100 120 140 160 180
-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Distance from Fixed End (in)

U
ni

t 
N

or
m

al
iz

ed
 M

od
al

 A
m

pl
itu

de

Unit Normalized Mode Shapes for Uniform Cantilever Beam

Datum

Mode 1

Mode 2

Mode 3

Mode 4



	

4.2.2 A

A

SAP2000

with	 6	 d

consider

consiste

shows	 is

four	unr

	

	

Analytical	C

An	 analytica

0.	Although

degrees	 of	

red	 for	 the	

d	 of	 a	 trans

sometric	 an

estrained	n

Characteriz

al	 model	 o

	the	analyti

freedom	 p

static	and	d

slation	 and	

nd	 elevation

nodes.		

Figure	4.

zation	in	SA

f	 the	 canti

ical	model	w

er	 node,	 on

dynamic	ch

an	 in‐plan

n	 views	 of	 t

2:	SAP2000

AP2000		

ilever	 beam

was	constru

nly	 the	 pla

haracterizati

e	 rotation	 a

the	 SAP200

0	Model	of	C

m	 was	 also

ucted	from	

anar	 degree

ions	with	 th

at	 each	unr

00	model	 o

Cantilever	B

o	 created	 a

3D	frame	(

es	 of	 freedo

his	model.	

restrained	n

f	 the	 cantil

Beam	

and	 analyze

beam)	elem

om	 (DOF)	 w

The	planar	

node.	 Figur

ever	 beam	

53	

ed	 in	

ments	

were	

DOF	

e	4.2	

with	

	



54	

	

Static	and	dynamic	analyses	were	conducted	for	the	SAP2000	model	of	the	cantilever	

beam.	The	static	analysis	was	performed	to	determine	the	effective	static	flexibility	matrix	

for	cantilever	beam.	The	effective	static	flexibility	matrix	is	defined	with	respect	to	only	the	

four	 translational	 DOF	 (the	 rotational	 DOF	 are	 excluded).	 The	 effective	 static	 flexibility	

matrix	 was	 computed	 by	 placing	 a	 unit	 load	 as	 a	 separate	 load	 case	 at	 each	 of	 the	

translational	 DOF	 locations	 in	 the	 model.	 The	 resulting	 translational	 displacements	

computed	at	each	of	the	four	nodes	for	a	given	load	case	are	the	flexibility	coefficients	 in	

one	 column	of	 the	 effective	 static	 flexibility	matrix.	 	The	 effective	 static	 flexibility	matrix	

computed	 for	 the	 cantilever	 beam	 from	 SAP2000	 analysis	 is	 shown	 in	 Table	 4.3,	 and	 is	

discussed	further	in	subsequent	sections.			

A	 dynamic	modal	 analysis	 of	 the	 analytical	 model	 was	 performed	 in	 SAP2000	 to	

determine	 the	 dynamic	 properties	 (natural	 frequencies	 and	mode	 shapes)	 for	 the	 beam.	

SAP2000	computes	nodal	masses	for	frame	elements	using	the	material	mass	density	and	

by	 default	 assigns	 these	masses	 to	 the	 unrestrained	 translational	 DOF.	 The	 user	 has	 the	

option	 to	 assign	masses	 to	 the	 other	DOF;	 however,	 this	was	not	done	 for	 the	 analytical	

model	discussed	herein.	As	a	result,	the	modal	analysis	results	computed	from	the	SAP2000	

model	 are	basically	 the	 same	 as	 those	 that	would	 be	 computed	by	using	 a	 lumped	mass	

idealization	 to	 formulate	 the	 equations	 of	 motion	 for	 the	 multiple	 degree	 of	 freedom	

system.	The	initial	SAP2000	analytical	model	consisted	of	four	unrestrained	nodes	located	

at	 the	 same	 points	 where	 the	 accelerometers	were	 placed	 on	 the	 physical	model	 in	 the	

laboratory.	 The	 amount	 of	mass	 lumped	 at	 each	 of	 the	 four	 translational	 DOF	 is	 shown	

schematically	 in	 Figure	 4.3.	 The	 SAP2000	 model	 was	 subsequently	 analyzed	 for	 an	
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increasing	number	of	nodes	to	identify	the	number	of	translational	DOFs	required	to	obtain	

a	 reasonable	 convergence	 to	 the	 results	 from	 the	 partial	 differential	 equation	 (PDE)	

solution.	The	convergence	plot	shown	in	Figure	4.4,	indicates	that	a	difference	of	less	than	

4%	relative	to	the	natural	frequencies	for	each	of	the	first	8	modes	computed	from	the	PDE	

solution	 was	 achieved	 when	 the	 SAP2000	 model	 included	 64	 unrestrained	 nodes	 (and	

translational	 DOF).	 The	 percent	 differences	 for	 the	 natural	 frequencies	 computed	 from	

SAP2000	relative	 to	 the	PDE	solution	 for	different	numbers	of	unrestrained	 translational	

DOFs	are	summarized	in	Table	4.2.		The	mode	shapes	computed	for	the	first	four	modes	of	

the	cantilever	beam	computed	 from	the	SAP2000	analytical	model	 (with	64	 translational	

DOF)	are	illustrated	in	Figure	4.5.	

	

	 	

	
Figure	4.3:	Lumped	Mass	Parameter	Model	
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Figure	4.4:	Natural	Frequencies	from	PDE	Solution	and	SAP2000	Analysis	

	

Table	4.2:	Natural	Frequencies	Computed	from	PDE	Solution	and	from	Different	
Analytical	Model	Discretizations	in	SAP2000	

Mode	
Number	

PDE	Solution	 SAP2000	
4	DOF	Model	

SAP2000	
64	DOF	Model	
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Frequency	

(Hz)	

Natural	
Frequency	

(Hz)	
%	

Difference1	

Natural	
Frequency	

(Hz)	
%	

Difference1

1	 2.6709	 2.5948	 ‐2.85	 2.6689	 ‐0.07	
2	 16.7386	 15.2300	 ‐9.01	 16.6973	 ‐0.25	
3	 46.8689	 40.2253	 ‐14.17	 46.6200	 ‐0.53	
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5	 151.8235	 ‐	 ‐	 149.7006	 ‐1.40	
6	 226.7980	 ‐	 ‐	 222.6420	 ‐1.83	
7	 316.7675	 ‐	 ‐	 308.6420	 ‐2.57	
8	 421.7318	 ‐	 ‐	 408.1633	 ‐3.22	

Notes:	1relative	to	the	PDE	solution
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The	strain	gages	installed	on	the	cantilever	beam	were	350	Ohm	weldable	gages	from	

Hitec	 Products,	 Inc.	 A	 total	 of	 two	 strain	 gages	 were	 installed	 on	 the	 top	 and	 bottom	

surfaces	 of	 the	 beam	 near	 the	 fixed	 support.	 The	 gages	were	wired	 in	 a	 Quarter	 Bridge	

configuration	 with	 the	 data	 acquisition	 system.	 During	 the	 static	 testing,	 the	 measured	

strains	were	used	to	determine	the	bending	moment	the	gage	location	and	this	was	used	to	

calculate	 the	 deflected	 shape	 of	 the	 beam	 using	 mechanics	 of	 materials	 principles.	 The	

displacements	at	discrete	points	along	the	length	of	the	beam	were	also	measured	directly	

using	 a	 Model	 PT510	 wire	 potentiometer	 from	 Celesco.	 This	 transducer	 was	 moved	 to	

different	points	along	the	length	of	the	beam	to	record	its	displacements	for	the	different	

static	load	cases.		

The	beam	was	initially	instrumented	with	five	accelerometers	that	were	evenly	spaced	

along	its	length.	Two	different	types	of	accelerometers	were	used	for	the	dynamic	testing	of	

the	beam.	The	first	type	used	was	the	Model	3711	DC	accelerometer	from	PCB	Piezotronics,	

and	the	second	type	was	the	Model	393BO5	from	the	same	company.	These	accelerometers	

are	very	 small	 and	 light‐weight	 sensors	and	 their	 installation	did	not	add	any	 significant	

mass	 to	 the	 beam.	 This	 is	 consistent	 with	 assumption	 made	 for	 the	 analytical	

characterizations	of	the	beam.	

The	locations	of	the	individual	sensors	on	the	cantilever	beam	are	shown	in	Figure	4.7.	

Photographs	of	the	different	sensors	used	are	provided	in	Figure	4.8.	
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Figure	4.9:	Closed‐form	Deflection	Equations	for	a	Cantilever	Beam	(from	AISC,	2005)	

	

The	actual	test	consisted	of	physically	loading	the	structure	at	one	node	location	with	a	

10	lb	weight	and	measuring	the	resulting	transverse	deflections	at	each	of	the	nodes.	The	

node	 locations	 corresponded	 to	 the	 locations	 of	 the	 accelerometers	 installed	 along	 the	

length	of	 the	beam.	This	process	was	 repeated	until	 all	 of	 the	 four	nodes	 locations	were	

loaded.	Each	load	case	produced	one	column	of	the	final	4	x	4	flexibility	matrix.		

The	 flexibility	matrix	obtained	using	 this	procedure	was	based	on	a	10	 lb	 load.	Each	

flexibility	 coefficient	 was	 subsequently	 divided	 by	 a	 constant	 value	 of	 10	 to	 make	 the	

matrix	 equivalent	 to	 what	 would	 be	 produced	 by	 a	 unit	 load.	 The	 theoretical	 flexibility	

matrix	computed	from	the	closed‐form	deflection	equations,	the	analytical	flexibility	matrix	

obtained	from	a	unit	load	analysis	of	the	analytical	model	of	the	beam	in	SAP2000,	and	the	

experimental	 static	 flexibility	matrix	determined	 from	the	static	 load	 testing	of	 the	beam	

b a

P

x
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are	 given	 in	 	 Table	 4.3.	 	 The	 theoretical	 and	 analytical	 flexibility	 matrices	 are	 nearly	

identical,	 and	 any	discrepancies	 are	most	 likely	 due	 to	 rounding	 errors	 in	 the	numerical	

calculations.	 	 The	experimentally	 identified	 flexibility	matrix	 also	 shows	good	 agreement	

with	 the	 theoretical	 and	 analytical	 flexibility	 matrices.	 The	 percent	 error	 between	 the	

experimental	 and	 analytical	 flexibility	 matrices	 is	 very	 small	 for	 coefficients	 associated	

with	the	deflection	measurements	taken	near	the	free	end	of	the	cantilever	beam.	The	error	

increases	 for	 flexibility	 coefficients	associated	with	 the	deflection	measurement	 recorded	

closer	to	the	fixed	end	of	the	beam.	This	error	can	be		attributed	to	the	beam	not	deflecting	

as	 much	 at	 these	 locations	 due	 to	 the	 applied	 loads,	 and	 these	 small	 deflections	 were	

difficult	 to	 measure	 accurately.	 The	 numerical	 deflection	 equations	 and	 the	 SAP2000	

analytical	model	both	indicate	that	the	displacement	at	DOF	4	(Node	4)	due	to	a	10	lb	load	

placed	at	DOF	4	would	be	0.011	 in.	The	actual	measured	displacement	 for	 this	 load	case	

was	0.01589	 in.	This	 indicates	 that	 the	displacement	 transducer	used	may	 lack	precision	

beyond	 0.01	 in.	 In	 addition,	 shear	 deformation	 might	 be	 contributing	 the	 measured	

displacement	at	this	location	since	it	is	close	to	the	support	and	this	effect	is	not	considered	

by	the	numerical	deflection	equations	that	were	used	or	by	the	analytical	model.		
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Table	4.3:	Cantilever	Beam	Static	Flexibility	
	 Theoretical	Flexibility	
	 		 DOF1	 DOF2	 DOF3	 DOF4	
	 DOF1	 0.071925	 0.045515	 0.022477	 0.006181	
	 DOF2	 0.045515	 0.030344	 0.015734	 0.004495	
	 DOF3	 0.022477	 0.015734	 0.008991	 0.002810	
	 DOF4	 0.006181	 0.004495	 0.002810	 0.001124	
	
	 Analytical	Flexibility	
	 		 DOF1	 DOF2	 DOF3	 DOF4	
	 DOF1	 0.07195	 0.04553	 0.02249	 0.00619	
	 DOF2	 0.04553	 0.03036	 0.01575	 0.00450	
	 DOF3	 0.02249	 0.01575	 0.00900	 0.00282	
	 DOF4	 0.00619	 0.00450	 0.00282	 0.00113	
	
	 Experimental	Flexibility	
	 		 DOF1	 DOF2	 DOF3	 DOF4	
	 DOF1	 0.072492	 0.046872	 0.024429	 0.007646	
	 DOF2	 0.046176	 0.030983	 0.016683	 0.005462	
	 DOF3	 0.024329	 0.017378	 0.010129	 0.003774	
	 DOF4	 0.007646	 0.005561	 0.003376	 0.001589	
	
	 %	Error	from	Experimental	to	Analytical	
	 		 DOF1	 DOF2	 DOF3	 DOF4	
	 DOF1	 ‐0.8%	 ‐3.0%	 ‐8.7%	 ‐23.7%	
	 DOF2	 ‐1.5%	 ‐2.1%	 ‐6.0%	 ‐21.5%	
	 DOF3	 ‐8.2%	 ‐10.5%	 ‐12.7%	 ‐34.3%	
	 DOF4	 ‐23.7%	 ‐23.7%	 ‐20.2%	 ‐41.4%	
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Evaluating	and	comparing	 flexibility	matrices	by	examining	 the	 individual	 coefficient	

values	can	be	cumbersome	and	one	can	become	quickly	lost	in	the	array	of	numbers.		This	

is	 especially	 true	 when	 the	 number	 of	 DOFs	 is	 very	 large.	 In	 order	 to	 permit	 a	 more	

conceptual	comparison	to	be	made,	this	thesis	compares	the	deflection	profiles	created	by	

virtually	loading	the	various	flexibility	matrices.		The	flexibility	matrix	can	be	multiplied	by	

a	virtual	 load	vector,	 resulting	 in	 the	displacement	of	each	point	due	 to	 that	 load.	 	These	

displacements	 can	 be	 plotted	 producing	 a	 deflection	 profile	 associated	 with	 the	 virtual	

loading.	

Consider	the	4	x	4	flexibility	matrix	identified	for	the	cantilever	beam.	If	a	4	x	1	virtual	

load	vector	consisting	of	30	lbs	applied	to	Node	2,	10	lbs.	applied	to	Node	3,	and	no	load	at	

Node	 1	 and	 Node	 4	 was	 multiplied	 by	 the	 flexibility	 matrix,	 a	 4	 x	 1	 vector	 of	 the	

displacements	 at	 each	 node	 would	 be	 obtained.	 These	 displacements	 u1	 through	 u4	

represent	 the	 displacement	 of	 DOF1	 through	DOF4	 respectively,	 due	 to	 the	 applied	 load	

vector.	This	computation	is	illustrated	schematically	in	Figure	4.10.		
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Figure	4.10:	Multiplication	of	Flexibility	Matrix	with	Virtual	Load	Vector	

	

	



65	

	

Figure	 4.11	 shows	 the	 deflection	 profiles	 produced	 for	 the	 cantilever	 beam	 by	

multiplying	 the	 numerical,	 analytical	 and	 experimental	 flexibility	matrices	with	 a	 virtual	

uniform	 load	 vector	 consisting	 of	 a	 1	 lb	 force	 applied	 to	 each	 node.	 There	 is	 very	 good	

agreement	 between	 the	 flexibility	 matrices	 computed	 analytically	 and	 theoretically.	

Qualitatively,	 the	 flexibility	matrix	obtained	from	the	experiment	 is	only	slightly	different	

from	 the	matrices	 obtained	 analytically.	 The	 experimental	 static	 flexibility	matrix	 is	 also	

very	 nearly	 symmetric,	 and	 the	 differences	 between	 the	 analytically	 and	 experimentally	

obtained	flexibilities	can	be	primarily	attributed	to	experimental	error.		

It	should	be	noted	that	the	experimental	flexibility	matrix	was	obtained	from	a	single	

load	test	of	 the	cantilever	beam.	 It	may	be	possible	 to	 further	minimize	the	experimental	

error	repeating	the	test	several	more	times	and	taking	the	average	of	the	results.		The	most	

important	observation	that	can	be	made	from	these	results	is	that	even	with	a	very	simple	

and	 mechanically	 transparent	 physical	 model	 tested	 under	 ideal	 conditions	 in	 the	

laboratory,	 there	 will	 be	 experimental	 errors	 and	 uncertainty	 in	 the	 quantitative	

characterization	results.		
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Figure	4.11:	Deflection	Profiles	from	Virtual	Uniform	Load	Applied	to		Flexibility	

Matrices	

	

4.5 DYNAMIC	TESTING	OF	THE	CANTILEVER	BEAM	MODEL	

The	 primary	 objective	 of	 the	 dynamic	 testing	 program	 executed	 for	 the	 cantilever	

beam	model	was	to	evaluate	the	different	dynamic	testing	strategies,	procedures	and	their	

associated	 data	 analysis	 requirements	 to	 determine	 an	 optimal	 full‐scale	 dynamic	

characterization	 approach	 for	 rapidly	 evaluating	 the	 condition	 and	 safety	 of	 bridge	

structures.	 The	 static	 and	 dynamic	 responses	 of	 a	 cantilever	 beam	 are	 very	 simple	 to	

conceptualize	and	predict	for	a	broad	range	of	loadings,	so	the	physical	model	represented	
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an	 ideal	 test	 specimen	 for	 starting	 such	 an	 evaluation.	 The	 dynamic	 testing	 and	

characterization	 of	 the	 cantilever	 beam	 was	 performed	 using	 several	 different	 types	 of	

dynamic	 excitation.	 	 Controlled	 dynamic	 testing	 of	 the	 beam	was	 accomplished	 using	 an	

instrumented	 impact	hammer	and	a	 linear	mass	shaker	device.	 	These	devices	permitted	

the	 dynamic	 excitation	 supplied	 to	 the	 structure	 to	 be	 measured.	 The	 measured	 input	

permitted	the	modal	vectors	identified	from	the	results	to	be	scaled	and	enabled	a	scaled	

modal	flexibility	matrix	to	be	computed	from	the	results.	The	beam	was	also	characterized	

by	 ambient	 vibration	 testing	 in	 which	 the	 dynamic	 excitation	 is	 neither	 controlled	 nor	

measured,	and	only	the	vibration	responses	of	the	beam	were	utilized	to	characterize	the	

structure.	The	dynamic	tests	provided	quantitative	descriptions	of	the	cantilever	beam	in	

terms	 of	 its	 natural	 frequencies,	 mode	 shapes,	 damping	 ratios,	 and	 modal	 scaling	

(controlled	dynamic	tests).	The	different	dynamic	testing	methods	applied	to	the	cantilever	

beam	and	their	results	are	further	described	in	the	following	sections.		

4.5.1 Impact	Hammer	Testing	

Dynamic	 testing	 via	 an	 instrumented	 impact	 hammer	 has	 several	 advantages.	 	 The	

frequency	band	of	the	dynamic	excitation	provided	by	an	impact	hammer	is	broad‐banded,	

which	 permits	 many	 modes	 to	 be	 excited	 simultaneously.	 The	 impact	 hammer	 can	 be	

equipped	with	a	variety	of	rubber	tips	having	different	stiffnesses.	The	different	rubber	tips	

allow	both	the	amplitude	and	the	frequency	band	of	the	dynamic	excitation	to	be	modified	

to	some	extent.	Impact	hammers	are	relatively	inexpensive	and	can	be	used	to	dynamically	

characterize	a	structure	quickly.	 	Instrumented	impact	hammers	are	available	in	different	

sizes,	 but	 they	 must	 be	 sized	 correctly	 for	 a	 given	 test	 structure.	 	 Using	 too	 small	 of	 a	



68	

	

hammer	on	a	large	structure	will	not	provide	enough	energy	into	the	system	to	fully	excite	

the	modes.	The	hammer	tip	selection	is	also	an	important	consideration	in	designing	a	test.	

The	soft	hammer	tip	provides	an	impulse	force	that	has	a	longer	time	duration	than	a	hard	

tip.	The	frequency	band	associated	with	a	long	duration	pulse	is	narrow	and	will	only	excite	

the	 lower	modes	 of	 the	 structure.	 Conversely,	 a	 hard	 tip	 has	 a	 very	 short	 impulse	 time	

duration	 which	 results	 in	 a	 larger	 frequency	 range	 for	 the	 input.	 	 Using	 too	 small	 of	 a	

frequency	range	will	limit	the	modes	captured,	while	using	too	large	of	a	range	may	excite	

non‐linearities	 of	 the	 system	 present	 at	 higher	modes.	 In	 addition,	 the	 larger	 frequency	

band	may	not	provide	as	much	energy	to	each	of	the	individual	modes.	

The	 impact	 testing	 of	 the	 cantilever	 beam	was	 accomplished	 using	 a	Model	 086C03	

instrumented	 impact	 hammer	 from	PCB	Piezotronics.	 	 This	 hammer	provides	 a	 range	 of	

±500	lbf,	with	a	sensitivity	of	10	mV/lbf.		Initially	a	soft	black	tip	was	used	for	this	test.		It	

was	thought	that	this	tip	would	adequately	excite	the	lower	modes,	as	these	are	the	modes	

that	will	contribute	most	to	the	dynamic	response	of	the	structure.		After	further	testing,	a	

softer	 red	 tip	 was	 used,	 and	 better	 results	 were	 obtained.	 	 Figure	 4.12	 shows	 the	 time	

domain	and	frequency	domain	representations	of	the	impulse	force	created	by	the	impact	

hammer.		As	seen	in	the	figure,	the	energy	input	rolls	off	rather	quickly	when	the	frequency	

is	 increased.	 	Using	 this	 soft	 tip	better	 excited	 the	 first	bending	mode,	 and	 gave	 a	better	

coherence	 in	 the	 impact	 test	performed,	 thus	producing	 the	closest	approximation	of	 the	

structures	response.	
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Figure	4.12:	Time	and	Frequency	Response	of	Impact	Hammer	

	

To	conduct	the	impact	dynamic	test	for	the	beam,	the	data	acquisition	system	was	set	

up	with	five	channels	of	data,	one	for	the	hammer	and	four	for	the	accelerometers	at	each	

-0.5 0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

x 10
4

0

1

2

3
Raw Time Data for Hammer Test

Time [s]

V
ol

ta
ge

 (
V

)

0 0.001 0.002 0.003 0.004 0.005 0.006 0.007 0.008 0.009 0.01
0

1

2

3
Windowed Time Data for Hammer Test

Time [s]

V
ol

ta
ge

 (
V

)

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

10

20

30

40

50

60

70

80

90

100
Single-Sided Amplitude Spectrum of y(t)

Frequency (Hz)

|Y
(f

)|



70	

	

node,	excluding	the	support	accelerometer.		The	system	was	set	to	detect	the	rising	voltage	

of	 the	 impact	 hammer,	 and	 then	 collect	 data	 starting	 20	 data	 points	 before	 the	 rise	was	

detected.	 	This	ensured	 that	 the	equilibrium	state	before	 the	 impact	was	applied	and	 the	

entire	 impact	 force	 were	 captured.	 	 The	 system	 collected	 for	 20	 sec	 on	 all	 channels	 to	

ensure	that	the	vibration	died	out	while	the	data	was	being	collected,	so	as	to	not	have	any	

leakage.			

Each	 node	 was	 impacted	 five	 times	 to	 average	 out	 any	 noise	 present	 in	 the	

measurements.	 	 All	 four	 of	 the	 nodes	 were	 impacted	 in	 this	 manner,	 thus	 giving	 a	 full	

dynamic	 test	 of	 the	 structure.	 	When	 the	measurements	were	 converted	 into	 Frequency	

Response	Functions	(FRFs),	a	full	4	x	4	FRF	matrix	was	compiled.		A	plot	of	the	FRF	matrix	

is	shown	in	Figure	4.13.		One	can	see	that	from	this	figure,	that	the	same	peaks	are	present	

in	nearly	every	plot.		These	peaks	are	the	natural	frequencies	of	the	structure.		If	the	impact	

and	 response	 location	were	 at	 a	 nodal	 point,	 a	 stationary	 point	 in	 the	mode	 shape,	 that	

peak	does	not	show	up.		This	can	be	seen	in	the	FRF	plot	shown	in	the	second	column	of	the	

second	row	in	Figure	4.13.	The	peak	observed	at	approximately	15	Hz	in	the	FRFs	for	the	

other	locations	on	the	beam	is	not	very	clear	in	this	FRF.		This	frequency	is	associated	with	

the	second	bending	mode	of	the	structure,	which	has	a	stationary	node	point	located	very	

near	 to	DOF2	(Figure	4.18).	With	 this	FRF	data,	 the	CMIF	algorithm	was	 implemented	 in	

order	to	find	the	modal	flexibility	matrix.			

Dynamic	 impact	 hammer	 testing	 was	 found	 to	 be	 very	 sensitive	 to	 several	 testing	

parameters.		The	initial	testing	was	done	with	PCB	3711	capacitive	accelerometers	and	the	

data	was	recorded	using	a	National	Instruments	SCXI	data	acquisition	device.		This	device	
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had	a	16	bit	analog	to	digital	converter	(ADC),	and	the	constant	current	excitation	for	the	

accelerometers	was	provided	by	an	external	source.		The	FRF	plots,	phase	angle	plots,	and	

coherence	 function	 plots	 obtained	 from	 these	 measurements	 were	 all	 found	 to	 be	 very	

noisy,	as	shown	in	Figure	4.14.		When	this	data	was	further	processed,	the	resulting	modal	

flexibility	as	represented	by	a	deflection	profile	was	around	15%	stiffer	than	the	analytical	

SAP2000	model.				

Another	series	of	impact	dynamic	tests	were	performed	using	different	sensors	and	a	

different	data	acquisition	device.	 	For	 this	 test,	Model	393B05	accelerometers	were	used	

with	a	National	Instruments	PXI	data	acquisition	system	that	had	24bit	ADC	dynamic	input	

modules.	 	The	same	black	hammer	tip	that	was	used	for	 the	previous	 impact	 testing	was	

also	used	in	this	test.	The	resulting	FRF	plots	were	much	cleaner,	and	this	can	be	attributed	

to	 the	 better	 ADC	 resolution	 and	more	 sensitive	 and	 accurate	 accelerometers	 that	were	

used	 for	 the	 second	 test.	 	 Even	 though	 the	 FRF	 plots	were	 cleaner,	 the	modal	 flexibility	

matrix	was	found	to	be	around	16%	more	flexible	than	the	flexibility	matrix	extracted	from	

the	 analytical	 model,	 a	 swing	 from	 the	 previous	 test	 of	 more	 than	 30%.	 	 After	 looking	

closer,	it	was	found	that	the	coherence	function	in	the	first	10	Hz	of	the	FRF	was	not	very	

good.	 	 Given	 that	 the	 first	 bending	mode	was	 found	 in	 this	 range,	 and	 also	 that	 the	 first	

mode	was	the	controlling	mode	of	 the	modal	 flexibility	matrix,	 it	was	decided	that	a	new	

series	 of	 tests	 must	 be	 employed	 to	 carefully	 consider	 the	 coherence	 from	 the	

measurements.	

The	black	hammer	 tip	was	 then	used	 in	 full	 test	of	 the	 cantilever	 structure,	with	 the	

average	 coherence	 of	 each	 subsequent	 hit	 carefully	 observed.	 	 It	 was	 found	 that	 the	
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coherence	 function	 would	 diverge	 at	 low	 frequencies	 when	 the	 cantilever	 was	 not	

completely	damped	out	to	zero	movement	before	the	next	hit	was	applied	to	the	structure.		

This	point	of	zero	movement	could	not	be	detected	with	the	naked	eye	but	was	found	by	

looking	at	the	real	time	acceleration	response	of	the	structure.		The	resulting	test	produced	

clean	FRFs,	with	good	coherence,	but	the	modal	flexibility	was	still	roughly	40%	different	

from	the	analytical	flexibility	matrix..			

The	 tip	 was	 then	 changed	 to	 a	 softer	 red	 tip,	 to	 help	 excite	 the	 first	 bending	mode	

better.	 	Again,	 a	 close	observation	of	 coherence	was	 implemented,	 and	very	good	results	

were	 obtained.	 	 One	 can	 see	 from	 Figure	 4.15	 that	 the	 data	 is	 much	 cleaner,	 and	 the	

coherence	 only	 diverges	 at	 anti‐resonance,	 which	 is	 reasonable	 (Allemang,	 1999).	 	 A	

representation	of	 the	modal	 flexibility	 in	 terms	of	 a	deflection	profile	 for	 these	 results	 is	

shown	in	Figure	4.16.		Note	that	the	error	was	reduced	to	less	than	4%	by	using	the	proper	

tip,	 watching	 the	 coherence	 closely,	 and	 using	 better	 sensors	 and	 data	 acquisition	

equipment.		



73	

	

	

	
Figure	4.13:	FRF	Plot	of	Cantilever	Beam	due	to	Impact	Test	
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Figure	4.14:	Noisy	FRF	Plot	due	to	Inferior	Equipment	

	
Figure	4.15:	Clean	FRF	Plot	with	Good	Coherence	
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Figure	4.16:	Deflection	Profile	for	Impact	Hammer	Test	

	

4.5.2 Dynamic	Shaker	Testing	

The	beam	was	also	 tested	using	a	 linear	mass	 shaker	device	 to	provide	 the	dynamic	

excitation.		The	nature	of	the	excitation	supplied	by	a	linear	mass	shaker	is	able	to	replicate	

any	type	of	signal	passed	to	its	amplifier.	Some	important	benefits	of	shaker	testing	include	

being	 able	 to	 accurately	 control	 the	 input	 into	 the	 system,	 being	 able	 to	 cover	 any	

frequency	range	of	interest,	and	being	able	to	input	large	forces	into	large	structures.		Some	

of	 the	 disadvantages	 include:	 that	 is	 may	 be	 expensive	 and	 difficult	 to	 deploy	 dynamic	

shakers	in	the	field,	and	a	need	for	an	ample	power	supply	for	the	shaker‐amplifier	setup.			
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One	advantage	of	shaker	testing	 in	a	structural	health	monitoring	situation	would	be	

that	 a	 shaker	 could	be	 set	 up	on	 the	bridge	and	 left	 there	 to	be	 controlled	by	personnel	

offsite.	 	 If	 an	 impact	 test	 were	 desired,	 a	 live	 body	 would	 need	 to	 be	 present	 on	 the	

structure	to	impact	at	all	the	locations	of	interest	for	the	test.		The	shaker	must	be	attached	

to	the	model	using	a	stinger.		The	affects	of	a	stinger	on	the	response	of	the	structure	is	an	

important	detail	not	to	be	overlooked.	 	Stinger	 location,	stinger	alignment,	stinger	 length,	

and	stinger	type	can	all	affect	the	FRFs	obtained	from	a	given	test.	 	Cloutier	and	Avitabile	

(2009)	thoroughly	explored	each	of	these	different	effects	on	the	measured	FRF’s	obtained	

from	modal	testing,	and	are	great	resources	on	the	topic.		In	order	to	minimize	the	effects	

mentioned,	a	single	setup	was	used	for	the	entire	series	of	tests.		Therefore,	if	any	error	was	

introduced,	it	would	be	common	to	all	measurements	taken.		

Mayes	 (2006)	 pointed	 out	 seven	 different	 challenges	 associated	with	 shaker	 testing	

and	how	to	overcome	those	challenges.		Included	in	the	list	was	how	to	obtain	good	results,	

minimize	noise,	and	what	types	of	signals	to	use.		Mayes,	along	with	Allemang	(1999),	talk	

about	the	differences	in	excitation	signals,	and	show	the	advantages	and	disadvantages	to	

each	type.		From	these	resources,	it	was	found	that	the	best	excitation	source	was	either	a	

burst‐random	 type,	 or	 a	 swept	 sine.	 	 After	 consulting	 the	 literature	 on	 dynamic	 shaker	

testing,	it	was	decided	that	a	burst	random	signal	type	would	be	the	best	type	of	input	for	

the	desired	results.	A	20	seconds	long	burst	random	signal	was	input	to	the	structure.		The	

burst	random	signal	contained	a	flat	line	input	on	both	ends	of	the	signal,	so	that	a	periodic	

input	 could	 be	 simulated,	 and	 the	decay	due	 to	 the	 structures	 natural	 damping	 could	 be	

analyzed.	 	 Figure	 4.17	 represents	 the	 input	 signal	 used.	 	 This	 shaker	 excitation	 was	
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provided	at	all	of	the	nodes	in	separate	setups,	and	the	response	was	measured	at	all	nodes	

in	each	setup.	A	total	of	 five	averages	were	recorded	for	each	 input	 location.	 	The	results	

obtained	were	close	to	the	analytical	and	impact	results.		It	was	observed	that	placing	the	

shaker	 close	 to	 the	 support	 produced	 very	 noisy	 and	 erroneous	 data.	 	 The	 FRF	 and	

coherence	plots	became	much	 clearer	 as	 the	 shaker	was	moved	 to	nodes	 located	 farther	

away	 from	 the	 fixed	 support.	 It	 is	 hypothesized	 that	 shaking	 the	 beam	near	 the	 support	

produced	 floor	 vibrations	 that	 traveled	 through	 the	 support	 into	 the	 structure,	 further	

exciting	it.		Since	this	was	unaccounted	for	in	the	load	cell	attached	to	the	shaker	armature,	

the	result	was	bad	coherence.			

	

	
Figure	4.17:	Burst	Random	Shaker	Input	
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Figure	4.18:	Mode	Shapes	from	Shaker	Test	
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during	 the	 dynamic	 testing.	 	 It	 should	 be	 noted	 that	 the	 shaker	 test	 contained	 noisier	

results,	which	may	have	contributed	to	it	being	slightly	less	accurate.	
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Figure	4.19:	Deflection	Profile	for	Shaker	Test	
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pseudo	flexibility	can	be	found,	as	well	as	natural	frequencies	and	mode	shapes.		Doebling	

and	 Farrar	 (1996)	 have	 done	 some	 work	 on	 obtaining	 scaled	 modal	 flexibility	 from	

ambient	 data	with	marginal	 results,	 showing	 there	 is	 still	 work	 to	 be	 done	 in	 this	 area.		

Despite	 this	 setback,	 ambient	data	has	 important	 long	 term	 structural	 health	monitoring	

benefits	(Aktan,	2002).		The	FHWA	has	initiated	a	long‐term	bridge	performance	program,	

where	 a	 number	 of	 bridges	 are	 to	 be	 instrumented	 to	 provide	 continuous,	 long	 term	

structural	 performance	 data	 (Friedland,	 2006).	 	 The	modal	 parameters	 obtained	 can	 be	

compared	 to	 the	 scaled	 values,	 and	 conclusions	 drawn	 regarding	 the	 effect	 of	 structural	

changes	seen	in	the	change	in	modal	parameters.		

Initially,	8	Model	3711	accelerometers	were	used	to	capture	the	ambient	noise	present	

in	the	room	during	data	collection.		Collecting	raw	“noise”	data	proved	to	be	inconclusive,	

and	no	quantifiable	 frequencies	or	mode	shapes	were	obtained.	 	When	a	small	excitation	

was	provided	by	 light	 finger	 taps	 along	 the	 cantilever,	 the	 structure	 became	 excited	 and	

some	 of	 the	 lower	 modes	 did	 show	 up.	 	 Several	 attempts	 were	 made	 to	 obtain	 these	

parameters	 using	 only	 the	 ambient	 excitation	 in	 the	 laboratory,	 but	 this	 proved	 to	 be	

difficult.	 	 The	 resulting	 Power	 Spectral	 Density	 (PSD)	 plot	 obtained	 from	 finger	 tapping	

excitation	 of	 the	 cantilever	 beam	 can	 be	 seen	 in	 Figure	 4.20.	 	 Notice	 that	 the	 first	 peak	

shows	 up	 well,	 while	 the	 second	 peak	 is	 more	 of	 a	 band	 of	 power	 near	 the	 natural	

frequency.			

The	 capacitive	 accelerometers	 on	 the	 beam	 were	 replaced	 by	 Model	 393B05	

accelerometers.	 Much	 clearer	 results	 (with	 the	 exception	 of	 DOF8	 close	 to	 the	 support)	

were	obtained	from	this	setup.		The	first	four	modes	could	be	identified	(Figure	4.21),	and	
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the	natural	frequencies	were	consistent	with	the	natural	frequencies	found	from	the	other	

dynamic	tests	and	analyses.	It	was	determined	from	both	the	ambient	test	and	the	impact	

test	 that	 the	combination	of	capacitive	accelerometers	coupled	with	a	16	bit	ADC	did	not	

provide	 enough	 resolution	 to	 clearly	 capture	 modal	 parameters,	 and	 was	 therefore	 not	

used	on	the	grid	structure.		

	

	
Figure	4.20:	PSD	of	Cantilever	Beam	with	PCB	3711	Accelerometers	

0 5 10 15 20 25 30 35 40 45 50
10

-12

10
-10

10
-8

10
-6

10
-4

10
-2

10
0

Frequency (Hz)

P
S

D
 (

g2 /H
z)

 

 

DOF-1

DOF-2
DOF-3

DOF-4

DOF-5

DOF-6
DOF-7

DOF-8



82	

	

	
Figure	4.21:	PSD	of	Cantilever	Beam	with	PCB	393B05	Accelerometers	
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the	modal	flexibility	matrices,	as	seen	in	Figure	4.22.	The	different	experimental	tests	vary	

in	total	by	about	10%,	with	the	closest	approximation	being	the	static	flexibility.		The	two	

modal	flexibilities	were	obtained	using	only	the	first	four	modes,	and	were	expected	to	be	

less	than	the	static	or	analytical	because	of	the	limited	inclusion	of	modal	contributions.			

	

	

	

Table	4.4:	Modal	Properties	Summary	for	Cantilever	Beam	
	 Analytical	

Model	
Impact	
Test	

Shaker	
Test	

Ambient	
Test	

	 Mode	
Number	

Natural	Frequencies	
	(Hz)	

	 1	 2.67	 2.54	 2.54	 2.54	
	 2	 16.70	 15.72	 15.61	 15.72	
	 3	 46.63	 44.93	 44.65	 44.82	
	 4	 91.03	 87.04	 88.09	 86.87	
	

	 Mode	
Number	

Damping	
(%)	

	 1	 ‐	 0.12	 1.44	 ‐	
	 2	 ‐	 0.08	 0.12	 ‐	
	 3	 ‐	 0.07	 0.01	 ‐	
	 4	 ‐	 0.11	 0.10	 ‐	
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Figure	4.22:	Deflection	Profile	for	Cantilever	from	Tests	
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differences.		This	is	especially	true	in	the	first	mode	of	the	cantilever,	which	controls	62%	

of	the	flexibility.		Therefore	clear	understandings	of	the	controlling	modes,	and	the	effect	of	

peak	 picking	 on	 the	 calculated	modal	 flexibility,	 are	 crucial	 for	 proper	modal	 parameter	

estimation.				

Overall,	an	important	observation	that	can	be	made	from	these	results	is	that	even	with	

a	very	simple	and	mechanically	transparent	physical	model	tested	under	ideal	conditions	in	

the	 laboratory,	 there	 will	 be	 experimental	 errors	 and	 uncertainty	 in	 the	 quantitative	

characterization	results.		

	

	
Figure	4.23:	Effect	of	Peak	Picking	on	Modal	Flexibility	
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5. CHARACTERIZATION	OF	AN	UNDAMAGED	GRID	MODEL	

Starting	 with	 a	 simple	 model,	 such	 as	 the	 fixed	 end	 cantilever	 beam,	 allowed	 the	

research	 methods	 and	 procedures	 used	 for	 sensor	 setup,	 data	 collection,	 and	 post‐

processing	techniques	to	be	verified.	Once	this	was	accomplished,	a	second	laboratory	test	

evaluation	program	ensued	on	the	grid	model,	which	can	be	seen	in	Figure	5.1.	This	grid	

model	 was	 assembled	 in	 the	 research	 lab,	 and	 thus	 provided	 an	 excellent	 avenue	 for	

expanding	the	test	methods	proposed	into	a	bridge	type	structure.	The	grid	was	composed	

of	W8X10	beams	bolted	with	gusset	plates	at	the	joints.		Since	this	structure	did	not	contain	

a	concrete	deck,	it	was	not	as	stiff	as	a	girder	bridge	with	a	deck	would	be,	but	still	provided	

an	excellent	 avenue	 for	 evaluating	an	optimal	 SHM	method	on	 simply	 supported,	 girder‐

bridge	type	structures.	The	grid	was	tested	in	a	similar	manner	as	the	cantilever,	starting	

with	static	testing	and	ending	with	ambient	vibration	testing.	One	difference	between	the	

grid	model	and	the	cantilever	model	was	in	the	solution	of	mathematical	equations	for	the	

governing	 equations	 of	 motion	 and	 static	 flexibility.	 While	 closed	 form	 equations	 were	

available	for	a	cantilevered	structure,	they	were	not	easily	compiled	for	a	steel	grid	model	

like	 the	 one	 used.	 Therefore,	 the	 SAP2000	 analytical	model	was	 a	 stand‐alone	 analytical	

model,	and	was	not	verified	with	mathematical	solutions.		
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to	 the	beam	webs.	All	 of	 the	bolted	 connections	 in	 the	grid	model	used	3/8	 in.	 diameter	

standard	grade	bolts.	 	Each	end	of	 the	main	 longitudinal	beams	was	supported	on	pin	or	

roller	bearings	that	were	attached	to	steel	pedestals,	with	an	overall	span	length	of	24	ft.	

Several	photographs	of	the	grid	model	in	the	laboratory	are	shown	in	Figure	5.1.			

A	numbering	system	was	devised	to	describe	locations	on	the	grid	structure	in	which	

the	 intersections	 of	 each	 transverse	 and	 longitudinal	 member	 was	 assigned	 a	 letter	

between	 A	 and	 G	 corresponding	 to	 the	 locations	 of	 the	 transverse	 members,	 and	 the	

number	1,	2,	or	3	corresponding	 to	each	of	 the	main	 longitudinal	beams.	The	numbering	

convention	 adopted	 for	 the	 grid	 model	 is	 shown	 in	 Figure	 5.2.	 In	 the	 simple	 span	

configuration,	the	support	bearings	were	located	at	grid	points	A1,	A2,	A3,	G1,	G2,	and	G3.	

	

	
Figure	5.2:	Numbering	Convention	for	Grid	Model	
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The	 grid	 model	 was	 instrumented	 with	 strain	 gages,	 accelerometers,	 and	 linear	

displacement	sensors.	The	instrumentation	scheme	devised	for	this	model	was	adequately	

able	 to	 reliably	 characterize	 this	 structure	 using	 both	 static	 testing	 and	 dynamic	 testing	

methods.		

5.1.1 Strain	Gages	

A	total	of	26	strain	gages	were	installed	on	the	grid	model	in	order	to	further	calibrate	

the	 finite	 element	 model	 created	 in	 SAP2000	 through	 static	 testing.	 The	 gages	 were	

installed	 at	 several	 locations	 along	 the	 length	 of	 the	 longitudinal	 beams	 at	 the	 top	 and	

bottom	 flanges,	 and	on	 the	underside	of	 the	bottom	 flanges	of	 several	 transverse	beams.		

Each	strain	gage	was	assigned	a	name	that	corresponded	to	its	geographic	location	on	the	

grid	model	 and	 to	 its	 location	on	 the	beam’s	 cross	 section.	The	 strain	gages	used	 for	 the	

grid	model	were	350	Ohm	weldable	gages	from	Hitec	Products,	Inc.		The	strain	gages	were	

installed	 using	 a	 capacitive	 discharge	 spot	 welder	 and	 were	 axial	 gages	 that	 measured	

strain	in	one	principal	direction.	They	had	a	one	inch	active	grid	a	nominal	gage	factor	of	

2.00.	 The	 gages	were	wired	 into	 the	 data	 acquisition	 system	 using	 a	 three	wire	 Quarter	

Bridge	 circuit	 configuration.	 A	 photograph	 of	 a	 typical	 strain	 gage	 installed	 on	 the	 grid	

model	is	shown	in	Figure	5.3.	
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The	 accelerometers	 were	 physically	 located	 at	 the	 intersections	 of	 the	 longitudinal	

beams	 and	 the	 transverse	 beams	 of	 the	 grid	 model.	 A	 total	 of	 21	 accelerometers	 were	

installed	 on	 the	model	 and	were	 oriented	 to	measure	 the	 vibrations	 of	 the	model	 in	 the	

vertical	 direction	 only.	 The	 actual	 attachment	 of	 the	 accelerometers	 to	 the	 model	 was	

accomplished	 using	magnetic	 mounting	 bases	 (393C)	 and	 hot	 glue	 (393B05).	 The	more	

sensitive	Model	393B05	accelerometers	were	 located	above	 the	support	bearings	 for	 the	

grid	model.	 	Although	very	 little	vibration	was	expected	to	occur	at	the	support	 locations	

these	accelerometers	served	a	valuable	role	in	evaluating	the	condition	of	the	structure	for	

damage	 scenarios	 that	were	 implemented,	 particularly	 those	 associated	with	 changes	 to	

the	 support	 conditions.	The	Model	393C	accelerometers	were	placed	at	 the	unsupported	

grid	 intersection	 points	 on	 the	 model.	 These	 accelerometers	 had	 a	 reasonably	 large	

measurement	range	and	facilitated	impact	and	shaker	testing	of	the	model,	and	were	also	

sensitive	enough	to	be	useful	for	characterizing	the	model	due	to	ambient	vibrations.	Each	

accelerometer	that	was	installed	followed	the	naming	convention	shown	in	Figure	5.2,	and	

pictures	of	the	accelerometers	can	be	seen	in	Figure	5.4.			

	

Table	5.1:	Performance	Specifications	for	Accelerometers	on	Grid	Model	
	
Specification	 Model	393C	 Model	393B05	

	 Sensitivity	 1	V/g	 10	V/g	

	 Measurement	Range	 2.5	g	peak	 0.5	g	peak	

	 Frequency	Range	(±	5%	accuracy)	 0.025	to	800	Hz	 0.7	to	450	Hz	

	 Broadband	Resolution	(1	to	1000	Hz)	 100	micro	g	 4	micro	g	
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5.1.3 Displacement	Sensors	

A	total	of	three	different	types	of	linear	displacement	sensors	were	used	in	conjunction	

with	 each	 other	 for	 characterizing	 the	 grid	 model	 structure.	 The	 different	 types	 of	

displacement	 sensors	were	used	because	 the	 instrumentation	 scheme	 for	 the	grid	model	

required	a	total	of	15	displacement	sensors	and	only	limited	quantities	of	each	type	were	

available	 in	 the	 laboratory.	 The	 displacement	 sensors	 used	 included	 the	 Model	 CDP25	

displacement	 sensor	 from	TML,	and	 the	Models	SP2	and	PT510	string	pots	 from	Celesco	

Transducer	Products,	Inc.	The	displacement	sensors	were	installed	to	measure	the	vertical	

displacements	 of	 the	 grid	model	 at	 each	 intersection	 of	 the	 longitudinal	 and	 transverse	

beam	members	 (excluding	 the	 support	 locations).	 The	 locations	 and	 naming	 convention	

adopted	 for	 the	 displacement	 sensors	 installed	 on	 the	 grid	 model	 followed	 the	 naming	

scheme	in	Figure	5.2.	A	table	showing	the	performance	specifications	of	the	different	gages	

can	be	seen	in	Table	5.2.	

	

Table	5.2:	Performance	Specifications	for	Displacement	Gages	
	

Specification	 TML	CDP25	 Celesco	SP2‐12	 Celesco	PT510	
	 			Sensitivity	 0.25	mV/mm	 0.8	V/in	 1.0	V/in	

	 			Range	 0‐25	mm	 2‐12	in.	 0‐5	in.	

	 			Type	 Spring‐pin	 Cable	Extension	 Cable	Extension	

	 			Quantity	Used	 7	 2	 6	
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freedom	 (DOF)	 were	 considered	 for	 the	 static	 and	 dynamic	 characterizations	 with	 this	

model.	 The	 planar	 DOF	 consisted	 of	 a	 translation	 and	 an	 in‐plane	 rotation	 at	 each	

unrestrained	 node.	 The	 analytical	 characterization	 for	 the	 grid	 model	 identified	 the	

flexibility	matrix	 from	 static	 analysis	 and	 the	natural	 frequencies	 and	mode	 shapes	 from	

dynamic	modal	analysis	within	SAP2000.		

5.2.1 Static	Analysis	and	Calibration	

The	 initial	 analytical	 model	 developed	 in	 SAP2000	 was	 somewhat	 idealized.	 The	

intersections	 of	 the	 longitudinal	 and	 transverse	 beam	 members	 were	 modeled	 as	 rigid	

joints;	 however,	 the	 additional	 bending	 stiffness	 provided	 by	 the	 top	 and	 bottom	 gusset	

plates	 was	 not	 included	 in	 the	 initial	 model.	 After	 performing	 the	 experimental	 static	

analysis	and	comparing	to	the	static	analysis	results	from	SAP2000,	it	was	found	that	this	

initial	 model	 was	 not	 accurate.	 Therefore,	 an	 updated	 model	 was	 created,	 taking	 into	

account	 some	 of	 the	 added	 stiffness	 associated	 with	 the	 gusset	 plates	 at	 the	 joints	 by	

replacing	 the	 frame	 members	 near	 the	 nodes	 with	 members	 that	 had	 additional	 flange	

thickness	on	top	and	bottom,	as	seen	in	Figure	5.5.	This	updated	model	produced	a	much	

more	 accurate	 representation	 of	 the	 grid	model,	 and	was	 therefore	 used	 as	 the	 baseline	

comparison	tool	for	the	different	experimental	tests	performed	on	the	grid.			
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Figure	5.5:	Stiffened	vs.	Un‐stiffened	Frame	Members	

	

The	flexibility	matrix	was	extracted	from	the	model	by	performing	a	series	of	unit	load	

analyses.	A	series	of	individual	static	load	cases	were	created	in	which	a	unit	 load	(1	kip)	

was	place	 at	 each	node	 (intersection	of	 longitudinal	 and	 transverse	beam	elements)	 and	

the	 vertical	 deflections	 of	 all	 nodes	 were	 determined.	 The	 nodes	 corresponding	 to	 the	

support	locations	were	not	included	in	the	analysis.		The	resulting	flexibility	matrix	was	a	

square	symmetric	matrix	of	size	15	x	15,	and	was	normalized	in	order	to	get	units	of	[lbf]	

and	[in].		
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5.2.2 Dynamic	Modal	Analysis	

A	dynamic	modal	analysis	of	the	grid	analytical	model	was	also	conducted	in	SAP2000	

to	determine	the	dynamic	properties	of	the	system	(natural	frequencies	and	mode	shapes).		

Centerline	and	extruded	views	of	the	analytical	model	are	shown	in	Figure	5.6.		In	order	to	

ensure	the	results	of	the	analytical	characterization	were	consistent	with	the	experimental	

characterization	 program	 that	 was	 being	 performed	 on	 the	 grid	 model	 the	 DOFs	 were	

limited	 to	 the	 vertical	 direction	 only.	 	 It	 was	 expected	 that	 the	 modal	 flexibility	 found	

experimentally	 would	 not	 exactly	 match	 the	 static	 or	 analytical	 flexibility	 due	 to	 modal	

truncation.		By	analyzing	the	analytical	model	created	in	SAP2000,	it	was	decided	that	only	

the	first	8‐9	modes	could	be	reliably	found	and	characterized	experimentally	due	to	spatial	

resolution	of	sensors	and	the	frequency	range	of	the	sensors.	Including	these	modes	in	the	

calculation	 of	modal	 flexibility	 provided	 a	 good	 overall	 characterization	 of	 the	 structure	

and	served	as	the	baseline	of	comparison.			

The	 calibrated	FE	model	 in	SAP2000	was	able	 to	produce	 reasonably	accurate	mode	

shapes	 and	 natural	 frequencies	 that	 were	 able	 to	 serve	 as	 a	 comparison	 tool	 for	 the	

subsequent	experimental	tests	performed.	Without	this	baseline,	 it	would	be	very	easy	to	

accept	 a	 wrong	 characterization	 of	 the	 grid	 structure,	 not	 knowing	 what	 a	 reasonable	

answer	would	 be.	 From	 the	 analysis	 performed,	 the	 first	 nine	modes	 and	 corresponding	

natural	frequencies	(in	the	vertical	direction	only)	can	be	seen	in	Figure	5.7.	



	

	

Figure	5.66:	FEM	Grid	d Model	
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Figure	5.9:	Displacement	Reading	from	Static	Grid	Loading	
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600	lbs)	and	was	normalized	for	comparison	purposes.	This	test	was	done	three	times,	and	

the	 results	 were	 averaged.	 When	 compared	 to	 the	 first	 analytical	 model	 produced	 in	

SAP2000,	the	resulting	flexibility	matrix	was	off	by	a	substantial	amount,	raising	questions	
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pertaining	 to	why	 the	 analytical	model	was	more	 flexible	 than	 the	 physical	model.	 After	

further	 investigation,	 the	analytical	model	was	updated	to	account	 for	the	added	bending	

stiffness	resulting	from	gusset	plates	at	each	connection	(as	noted	in	Section	5.2).	

After	 updating	 the	 model	 a	 new	 set	 of	 tests	 were	 run,	 and	 new	 normalized	 static	

flexibility	 matrices	 were	 found	 that	 produced	 good	 results.	 	 As	 seen	 in	 Table	 5.3,	 the	

average	 error	 of	 the	matrix	 decreased	with	 the	 higher	weights	 used,	 but	 did	 not	 reduce	

further	 with	 the	 800	 lb	 loads.	 	 Since	 errors	 are	 inevitably	 present	 in	 any	 experimental	

testing	procedure,	a	perfect	representation	of	flexibility	was	not	achievable.		It	was	decided	

that	a	value	of	10%	error	was	within	reason,	and	the	analytical	model	was	kept.		It	should	

be	noted	that	the	finite	model	could	have	been	updated	several	more	times	in	order	to	be	

very	 close	 to	 the	 experimental	 data.	 	 Given	 that	 the	 static	 flexibility	 matrix	 contained	

experimental	 errors	 and	was	 non‐symmetric,	 the	 10%	 range	 was	 acceptable.	 	 Since	 the	

different	 flexibility	 matrices	 were	 obtained	 for	 comparison	 purposes	 only,	 updating	 the	

analytical	model	to	perfectly	match	the	static	model	was	unnecessary.			

	

Table	5.3:	Percent	Error	in	Flexibility	Matrix	
	 Load	Case		

[lb	per	node]	
Average	%	Error*	

[%]	
	 200	 17	

	 400	 12	

	 600	 10	

	 800	 10	

	 *	Percent	error	between	Static	and	Analytical		
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5.3.2 Static	Load	Cases	

Further	 verification	 of	 the	 analytical	 static	 flexibility	 compared	 to	 the	 experimental	

static	 flexibility	 was	 done	 through	 the	 means	 of	 six	 additional	 loading	 scenarios.	 These	

different	 loading	 cases	 were	 meant	 to	 mimic	 different	 loading	 stages	 that	 an	 in‐service	

bridge	 might	 be	 subject	 too.	 Given	 the	 limitations	 of	 loading	 masses	 available	 in	 the	

laboratory,	 the	 load	 cases	 did	 not	 contain	 heavy	 loads.	 Figure	 5.10	 summarizes	 the	 six	

different	 load	 cases	 enacted	 on	 the	 grid	model.	During	 each	 load	 case,	 the	 deflections	 at	

every	node	were	measured.	The	deflections	due	to	a	given	load	case	were	found	from	the	

analytical	model	by	taking	the	normalized	flexibility	 found	in	SAP2000	and	multiplying	 it	

by	 a	 load	 vector	 representing	 each	 load	 case.	 In	 effect,	 the	 analytical	 flexibility	 was	

multiplied	 by	 a	 virtual	 load	 to	 obtain	 a	 virtual	 displacement,	 which	 resulted	 in	 a	

displacement	 value	 for	 each	 node.	 These	 analytical	 displacements	 were	 then	 compared	

with	the	actual	physical	displacements	measured	to	compare	the	accuracy	of	the	model.		A	

representation	 of	 the	 displacement	 plots,	 both	 in	 3D	 and	 in	 planar	 view,	 can	 be	 seen	 in	

Figure	 5.11	 and	 Figure	 5.12.	 From	 these	 figures,	 it	 was	 found	 that	 the	 maximum	

displacement	 generally	 was	 around	 5%	 off,	 showing	 very	 good	 agreement	 between	 the	

tests.		It	can	also	be	seen	from	these	deflection	profiles,	that	discrepancies	are	present,	like	

sensor	E2	(which	was	later	found	to	be	a	bad	sensor).	Other	errors	were	attributed	to	the	

size	of	deflections	being	measured.	When	loaded,	the	static	displacement	gages	were	only	

deflecting	a	few	thousandths	of	an	inch,	and	were	affixed	to	the	structure	by	thin	wire	(wire	

pots)	or	by	direct	contact	(TML	gages).	Even	a	very	small	amount	of	play	in	the	mounting	

device	or	wire	would	be	enough	to	drastically	change	the	recorded	result.		
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Figure	5.10:	Grid	Model	Static	Load	Cases	
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Figure	5.11:	Static	Load	Case	#1	
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Figure	5.12:	Static	Load	Case	#3	
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Bending	moments	 from	 the	 static	 load	 tests	were	 computed	 from	measured	 strains	 and	

section	properties	 and	were	 compared	with	 the	 corresponding	moments	 found	 from	 the	

SAP2000	analytical	model.	

The	internal	bending	moment	at	a	given	strain	gage	location	was	computed	using	the	

following	 relationship	 that	 exists	 between	 bending	 stress,	σb,	 on	 a	 cross	 section	 and	 the	

internal	moment:	

	

where	M	 is	 the	 internal	 bending	 moment	 at	 the	 cross	 section	 being	 evaluated,	 y	 is	 the	

distance	 from	 the	 neutral	 axis	 of	 the	 cross	 section	 to	 the	 point	 where	 stress	 is	 being	

evaluated,	and	I	is	the	moment	of	inertia	of	the	cross	section	about	the	axis	of	bending.			

The	 relationship	 between	 the	 bending	 stress	 and	 longitudinal	 strain	 is	 given	 by	

Hooke’s	Law	and	can	be	expressed	as	follows:	

	

where		is	the	longitudinal	strain	measured	by	the	strain	gage	and	E	is	Young’s	Modulus	for	

steel.	 	By	setting	the	two	stress	equations	equal,	and	solving	 for	 the	bending	moment,	an	

equation	 for	 determining	 the	 bending	moment	 at	 a	 location	 on	 the	 grid	model	 from	 the	

measured	strain	at	that	location	is	obtained:	

	

where	the	section	modulus	S	=	I/y.	
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The	 experimentally	 determined	 bending	 moment	 at	 each	 strain	 gage	 location	 was	

compared	with	 the	analytically	determined	bending	moment	 from	the	SAP2000	model	of	

the	grid	structure	for	each	load	case.		Large	errors	and	differences	were	found	between	the	

experimental	and	analytical	models.	One	end	of	the	model	had	errors	in	the	3‐10%	range,	

while	 the	 other	 end	 had	 errors	 in	 the	 10‐30%	 range.	 	 Since	 the	 static	 deflection	 results	

showed	good	agreement,	the	strain	results	were	not	used	to	further	update	the	model.			

5.4 DYNAMIC	TESTING	OF	THE	UNDAMAGED	GRID	MODEL	

Static	 testing	 was	 implemented	 on	 the	 grid	 model	 as	 a	 means	 of	 validating	 the	

SAP2000	 analytical	model	 and	 for	 comparing	 to	 the	 dynamic	 characterization.	 	 As	 noted	

earlier,	 static	 testing	 of	 an	 in‐service	 bridge	 would	 be	 extremely	 difficult,	 and	 not	 very	

practical.		Therefore	the	bulk	of	the	research	focused	on	dynamic	testing	of	the	grid	model,	

including	impact	hammer	testing,	dynamic	shaker	testing,	and	ambient	vibration	testing.			

5.4.1 Impact	Hammer	Testing	

The	 grid	model	 was	 tested	 using	 a	model	 086D20	 instrumented	 hammer	 from	 PCB	

Electronics,	 Inc.,	 which	 provided	 a	 range	 of	 ±5000	 lbf	with	 a	 sensitivity	 of	 1	mV/lbf.	 	 A	

medium	hardness	 red	 tip	was	used	 for	 the	 test.	 	The	data	 acquisition	 system	was	 set	up	

with	 22	 channels	 of	 data,	 1	 for	 the	 hammer	 input	 and	21	 for	 the	 accelerometers,	 one	 at	

each	node	including	the	support	locations.		An	off‐the‐shelf	testing	and	processing	software	

was	 used	 to	 help	 facilitate	 the	 testing.	 	 Using	 this	 software	 allowed	 the	 researcher	 to	

explore	 the	 capabilities	 of	 one	 software	 package	 and	 compare	 its	 capabilities	 with	

algorithms	and	processing	techniques	developed	in	MATLAB.	 	The	software	chosen	was	a	
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package	 from	 M+P	 International	 called	 “Smart	 Office”.	 	 This	 software	 allowed	 for	 easy	

setting	of	 the	 testing	parameters	 including	block	size,	 frequency	resolution,	 settling	 time,	

pre‐trigger	delay,	and	other	useful	properties.			

The	test	was	set	to	collect	data	for	8	sec.	after	the	triggered	impact,	with	sampling	rate	

of	2048	Hz.	 	 Each	node	was	 impacted	 five	 times	 to	 average	out	 any	noise	present	 in	 the	

measurements.	 	All	 21	of	 the	nodes	were	 impacted	 in	 this	manner,	 thus	producing	a	 full	

dynamic	 test	 of	 the	 structure.	 	 The	M+P	 software	 package	 converted	 the	 time	 data	 into	

frequency	 data,	 and	 produced	 FRFs	 and	 coherence	 for	 each	 hit	 in	 real	 time,	 which	 was	

monitored	for	any	sign	of	bad	hit	implementation.			

Smart	Office	allowed	for	modal	analysis	within	the	software,	but	proved	to	be	difficult	

to	 use	 and	 tended	 to	 crash	 often.	 	Modal	 flexibility	was	 not	 directly	 obtainable,	 and	 the	

modal	parameters	that	were	available	were	not	easily	exported.		Because	of	these	reasons,	

it	was	 found	 to	 be	 easier	 to	 use	 the	 processing	 described	 in	 Chapter	 3,	 implemented	 in	

MATLAB.		The	time	data	from	the	impact	tests	were	therefore	exported	into	MATLAB	and	

processed	using	the	CMIF	and	eFRF	algorithms.	

Two	separate	full	impact	tests	of	the	grid	model	were	carried	out.	 	Each	test	used	the	

same	 parameters	 and	 input	 device,	 and	 the	 results	were	 very	 similar.	 	 A	 representative	

figure	showing	the	driving	point	FRF	and	coherence	from	location	B3	is	seen	in	Figure	5.13.		

Note	 the	 good	 coherence	 at	 the	 peaks,	 and	 the	 clean	 peaks	 representing	 natural	

frequencies.		In	theory,	the	FRF	matrix	should	be	symmetric.		For	example,	the	response	at	

13	due	 to	an	 input	at	9	should	be	equal	 to	 the	response	at	9	due	 to	an	 input	at	13.	 	This	
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comparison	 is	 referred	 to	 as	 reciprocity.	 	 Reciprocity	was	 used	 to	 check	 that	 the	 signals	

were	being	properly	captioned,	and	an	example	of	a	reciprocity	spectrum	with	acceptable	

values	can	be	seen	in	Figure	5.14.		Notice	that	the	peaks	are	very	uniform	between	the	two	

different	FRFs,	and	divergence	only	occurs	at	the	anti‐resonance	locations.			

After	 the	 full	FRF	matrix	was	compiled	and	reciprocity	was	verified	 for	each	 test	set,	

the	 CMIF	 process,	 as	 outlined	 in	 Chapter	 3,	 was	 implemented.	 	 Singular	 Value	

Decomposition	was	performed	and	the	CMIF	plot	was	formed,	as	seen	in	Figure	5.15.		The	

first	eight	modes	were	selected,	and	can	be	seen	with	circles	around	the	asterisks.			

	

	
Figure	5.13:	Impact	FRF	and	Coherence	at	B3	
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Figure	5.14:	Reciprocity	Check	from	Grid	Impact	Test	

	

	
Figure	5.15:	CMIF	Plot	for	Undamaged	Grid	from	Impact	Hammer	Test	
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From	the	peaks	 in	 the	CMIF	plot,	eFRFs	were	created	 in	order	to	estimate	 the	modal	

parameters.	 From	 the	 eFRFs	 modal	 frequencies,	 mode	 shapes,	 and	 modal	 scaling	

coefficients	 were	 found,	 and	 are	 summarized	 in	 Table	 5.4	 and	 Figure	 5.16.	 These	

parameters	were	compiled	and	processed	to	find	modal	flexibility,	the	comparison	tool	for	

all	 the	 different	 tests	 performed.	 	 In	 the	 undamaged	 model,	 since	 there	 were	 21	 DOFs	

modal	flexibility	consisted	of	a	21x21	matrix	of	numbers.		Looking	at	such	a	matrix	can	be	

difficult	 to	 understand,	 and	 one	 can	 easily	 get	 lost	 in	 the	 array	 of	 numbers	 present.		

Therefore,	as	in	the	case	of	the	cantilever,	the	modal	flexibility	was	multiplied	by	a	virtual	

load	vector	(40	lb	distributed	load)	and	the	resulting	deflection	profile	was	plotted	as	the	

comparison	tool	between	static,	analytical,	and	impact	testing.	Figure	5.17	shows	a	3D	plot	

of	these	deflections,	and	Figure	5.18	shows	the	elevation	views	of	the	different	girders.		As	

expected,	the	flexibility	was	less	than	that	of	the	analytical	or	static	results.	Since	only	the	

first	eight	modes	were	captured,	the	resulting	flexibility	did	not	contain	the	contributions	

of	higher	modes.	Including	more	modes	theoretically	would	have	increased	the	value	of	the	

modal	flexibility	matrix,	but	was	not	possible	given	the	constraints	of	the	testing	setup.	The	

actual	 resulting	 deflection	 profile	 was	 found	 to	 be	 14%	 from	 the	 analytically	 predicted	

profile.	 It	 can	also	be	seen	 that	 the	 two	different	 impact	 tests	performed	gave	nearly	 the	

same	results,	showing	consistency	and	reliability	in	the	testing	methods	used.			
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Table	5.4:	Impact	Test	Dynamic	Properties	

Mode	
Number	

Mode	
Description	

	Analytical	
Model	 Impact	Hammer	Test	

Natural	
Frequency	
(Hz)	

Natural	
Frequency	
(Hz)	

Damping	
(%)	

%	
Difference1	

1	 1st	Bending	 9.172 9.570 1.37 4.34
2	 1st	Torsion	 10.015 10.958 1.32 9.41
3	 2nd	Bending	 36.229 34.714 0.94 ‐4.18
4	 2nd	Torsion	 39.629 38.996 0.7 ‐1.60
5	 3rd	Bending	 78.791 72.831 1.03 ‐7.56
6	 1st	Butterfly	 83.583 80.058 0.85 ‐4.22
7	 3rd	Torsion	 87.394 82.695 1.15 ‐5.38
8	 2nd	Butterfly	 91.117 88.324 0.89 ‐3.07

Notes:	1from	the	Analytical	natural	frequencies

	

	
Figure	5.16:	Mode	Shapes	from	Impact	Test	
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Figure	5.17:	3D	Deflection	Profile	for	Impact	Test	

	

	
Figure	5.18:	Elevation	Deflection	Profiles	for	Impact	Tests	
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5.4.2 Dynamic	Shaker	Testing	

Dynamic	 shaker	 testing	was	performed	on	 the	grid	by	attaching	 the	armature	of	 the	

shaker	to	the	underside	of	the	grid	at	the	same	nodal	locations	where	accelerometers	were	

present.	The	shaker	was	attached	to	the	structure	with	a	stinger	coupled	with	a	 load	cell	

and	clamped	to	the	structure,	as	can	be	seen	in	Figure	5.19.		Attaching	the	load	cell	in	line	

with	 the	 shaker	 force	 allowed	 for	 capturing	 the	 actual	 input	 force	 being	 supplied	 to	 the	

structure.	 	A	burst	random	signal	with	a	frequency	range	of	100	Hz,	input	for	16	sec,	was	

generated	through	a	Data	Physics	Corp.	hardware	and	software	package.	The	system	also	

captured	all	response	channels,	and	performed	a	real	time	transfer	function	computing	A/F	

(acceleration	 over	 force)	 and	 coherence.	 This	 allowed	 for	 rapid	 validation	 of	 testing	

techniques	and	signal	capture,	and	 therefore	sped	up	 the	process	of	data	collection.	 	Ten	

averages	with	no	windowing	were	performed	for	each	input	location.		All	15	internal	DOFs	

of	the	structure	were	used	as	input	points	along	with	all	21	accelerometer	responses,	thus	

creating	a	21x15	FRF	matrix.		It	was	found	that	using	a	low	amplitude	input	signal	achieved	

the	best	results,	and	was	verified	by	Mayes	&	Gomez	(2006).	Voltage	control	was	used	on	

the	shaker	amplifier,	which	produced	a	quieter	signal	from	the	shaker	body.		When	using	a	

voltage	 controlled	 amplification,	 the	 displacement	 of	 the	 armature	 of	 the	 shaker	 tries	 to	

match	the	input	signal.	 	When	using	a	current	controlled	amplification,	the	acceleration	of	

the	armature	of	the	shaker	tries	to	match	the	input	signal	(Allemang,	1999).		Since	a	burst	

random	signal	was	used	(see	Figure	4.17),	 the	signal	 jumped	around	very	quickly,	which	

produced	a	chattering	noise	 from	the	shaker	body	when	current	controlled	amplification	

was	used.		This	chattering	noise	was	also	felt	in	the	ground,	and	it	is	hypothesized	that	the	
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Figure	5.20:	FRF	at	Support	Location	

	

	
Figure	5.21:	FRF	at	D2	Location	
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The	shaker	testing	FRF	measurements	were	easily	exported	to	MATLAB,	and	were	then	

used	in	the	CMIF	parameter	estimation	algorithm.	After	converting	the	A/F	signals	to	X/F,	

singular	 value	 decomposition	 was	 performed	 and	 the	 CMIF	 plot	 (Figure	 5.22)	 was	

produced.	 From	 this	 graph	 the	 peaks	 were	 then	 picked	 in	 order	 to	 locate	 the	 natural	

frequencies.		When	compared	to	the	impact	test	CMIF	(Figure	5.15)	the	shaker	test	did	not	

provide	as	smooth	of	a	spectrum	but	all	of	the	same	modes	were	present	at	nearly	the	same	

frequencies.	 	From	these	peaks,	the	enhanced	frequency	response	functions	were	created,	

and	the	modal	parameters	were	 found,	 including	modal	 flexibility.	Figure	5.23	shows	the	

mode	shapes	found	from	the	shaker	test,	which	showed	to	be	very	similar	to	the	hammer	

impact	test.	Figure	5.24	shows	the	deflection	profile	obtained	from	modal	flexibility	along	

with	the	previous	deflection	profile	of	the	two	impact	tests,	static	test,	and	analytical	model.		

The	 resulting	modal	 flexibility	 obtained	 from	 shaker	 testing	 was	 around	 5.5%	 from	 the	

flexibility	obtained	from	impact	testing.		
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Figure	5.22:	CMIF	Plot	of	Undamaged	Grid	for	Shaker	Test	
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Figure	5.23:	Mode	Shapes	from	Shaker	test	
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Figure	5.24:	Deflection	Profile	of	Undamaged	Grid	for	Shaker	Test	
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1. Quiet	laboratory	setting	

2. ERSA	machine	running		

3. Uncoupled	dynamic	shaker	

4. Coupled	dynamic	shaker	

The	 first	 type	of	 test,	 performed	 in	 a	 quiet	 laboratory	 setting,	 consisted	of	 collecting	

measurements	 from	 the	 accelerometers	when	 the	 lab	was	 relatively	 quiet.	 	No	 attention	

was	paid	 to	 talking,	doors	opening	and	closing,	and	so	 forth.	 	This	data	was	collected	 for	

around	one	hour.	 	The	second	type	of	test	was	similar	to	the	first,	with	the	exception	of	a	

large	piece	of	machinery	running	two	rooms	away.	 	The	ERSA	(Evaluator	for	Rutting	and	

Stripping	of	Asphalt)	machine	was	running	constantly	during	these	tests,	and	produced	a	

regular	“thump‐thump”	vibration	that	was	slightly	able	 to	be	 felt	 through	the	 floor	 in	 the	

lab	 with	 the	 grid	 model.	 	 The	 third	 test	 was	 performed	 with	 the	 shaker	 on	 the	 floor	

underneath	 the	 grid	model,	 but	 unattached	 to	 the	 grid.	 	 This	 shaker	 provided	 a	 random	

vibration	 that	was	 translated	 through	 the	 floor	 into	 the	 supports,	 and	 therefore	 into	 the	

structure.	 	The	fourth	test	was	performed	by	attaching	the	shaker	to	the	grid,	as	with	the	

shaker	testing,	and	supplying	a	random	signal.		The	difference	with	this	fourth	test	and	the	

dynamic	 shaker	 testing	 are:	 (1)	 very	 small	 input	 signal	 into	 the	 grid,	 (2)	 no	 input	 was	

measured,	 (3)	 pure	 random	 signal	 used	 as	 opposed	 to	 burst	 random,	 (4)	 input	 and	

response	measured	for	30	min.	per	input	node.		The	benefit	of	this	fourth	type	of	test	was	

that	a	broad	range,	Gaussian	white	noise	signal	was	directly	applied	to	the	structure.		An	in‐

service	 bridge	would	 also	 receive	 this	 type	 of	 direct	 input	 in	 the	 form	 of	 traffic	 driving	

across	the	top	of	the	bridge.			
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Relying	on	a	quiet	laboratory	setting	did	not	provide	ample	excitation	to	the	structure,	

and	did	not	produce	clear	results.	 	The	power	spectral	density	(PSD)	of	each	channel	was	

taken,	and	should	have	produced	peaks	at	the	natural	frequencies	of	the	structure.		As	seen	

in	Figure	5.25,	these	peaks	were	present,	but	appeared	very	noisy	and	hard	to	distinguish	

without	 having	 prior	 knowledge	 of	 their	 locations	 (especially	 the	 lower	 modes).	 The	

normalized	 power	 spectral	 density	 (NPSD)	was	 also	 taken,	 and	 should	 have	 produced	 a	

more	magnified	peak	at	each	natural	 frequency,	and	can	be	seen	 in	Figure	5.26.	 	One	can	

see	that	this	method	of	ambient	excitation	was	not	an	ideal	method.				
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Figure	5.25:	PSD	of	Undamaged	Grid	from	“Quiet”	Ambient	
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Figure	5.26:	NPSD	of	Undamaged	Grid	from	“Quiet”	Ambient	
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Figure	5.27:	Time	Response	due	to	ERSA	
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Figure	5.28:	PSD	of	Undamaged	Grid	from	“ERSA”	Ambient	
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Figure	5.29:	NPSD	of	Undamaged	Grid	from	“ERSA”	Ambient	
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difference	 found	 from	 one	 input	 versus	 several	 inputs	 is	 illustrated	 in	 the	 CMIF	 plots	

shown	in	Figure	5.31.		

	
Figure	5.30:	NPSD	of	Undamaged	Grid	from	Coupled	Ambient	Input	
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Besides	 producing	 a	 PSD	 and	 NPSD	 plot	 to	 locate	 natural	 frequencies,	mode	 shapes	

were	also	able	 to	be	extracted	 from	ambient	vibration	data.	 	At	any	given	 frequency,	 the	

position	of	all	sensors	in	relation	to	one	sensor	produces	a	mode	shape.		Therefore,	at	each	

frequency	there	exists	several	mode	shapes,	one	for	each	channel	of	reference.		By	plotting	

all	of	these	mode	shapes	on	top	of	one	another,	it	is	easy	to	tell	when	a	true	mode	shape	has	

been	found,	because	all	of	the	plots	snap	together.	 	By	using	this	method,	mode	shapes	at	

each	peak	of	the	NPSD	was	found.		These	mode	shapes	and	frequencies	coincided	very	well	

with	 the	mode	shapes	and	 frequencies	 found	 from	other	dynamic	 testing	methods,	and	a	

sampling	of	the	first	two	mode	shapes	can	be	seen	in	Figure	5.32.		

	

	

	
Figure	5.32:	Mode	Shapes	from	Ambient	Testing	
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A	 second	 post‐processing	 method	 was	 employed	 with	 ambient	 vibration	 testing	 in	

order	 to	 use	 the	 CMIF	 algorithm	 developed.	 	 Since	 ambient	 vibration	 testing	 does	 not	

provide	 a	 measurement	 of	 the	 input,	 mass	 scaled	 mode	 shapes	 are	 not	 obtainable,	 and	

therefore	 a	 scaled	 flexibility	 is	 not	 obtainable.	 	 By	 using	 auto	 and	 cross	 correlation	

functions,	a	pseudo	impulse	response	function	(PIRF)	from	the	ambient	data	was	able	to	be	

found.		This	PIRF	looked	like	an	actual	impact	response,	exponentially	decaying	to	zero,	but	

was	 found	 from	 raw	 ambient	 data.	 	 These	 PIRFs	 were	 compiled	 for	 each	 channel,	 and	

processed	as	if	it	were	actual	impact	data.		The	benefit	in	this	process	was	being	able	to	use	

CMIF	to	obtain	a	pseudo	modal	flexibility,	which	was	then	compared	to	flexibility	obtained	

through	 the	 other	 testing	 methods	 to	 note	 any	 similarities.	 	 The	 disadvantage	 to	 this	

method	was	that	 the	data	was	“smeared”	together	 in	the	sense	that	each	channel	did	not	

produce	a	 separate	mode	shape	as	with	 the	previous	method;	only	one	mode	shape	was	

produced.	 	Therefore,	any	sensor	errors	or	 localized	problems	encountered	did	not	show	

up	as	pronounced	in	this	method.	

Using	the	data	from	the	coupled	shaker	input,	the	results	from	this	PIRF	method	was	

able	to	produce	FRFs	very	comparable	to	FRFs	from	other	dynamic	tests,	and	is	shown	for	

the	driving	point	at	location	E1	in	Figure	5.33.		The	natural	frequencies	were	analogous	to	

other	tests,	and	they	also	produced	clear	mode	shapes.		Overall,	the	PIRF	method	proved	to	

be	 useful	 in	 identifying	 frequencies	 and	 mode	 shapes.	 	 Conversely,	 the	 pseudo	 modal	

flexibility	obtained	from	this	method	was	not	very	similar	to	the	flexibility	obtained	from	

the	other	methods.		While	the	deflection	profiles	displayed	a	similar	shape,	the	magnitude	

of	each	girder	deflection	relative	to	the	other	girders	was	very	different.	 	 In	other	words,	
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girder	#3	deflected	far	more	than	girder	#1,	in	the	order	of	three	times	the	amplitude.		The	

overall	deflection	profile	vector	was	compared	to	both	 the	 impact	and	shaker	deflections	

with	 the	 Modal	 Assurance	 Criteria	 (MAC),	 and	 values	 of	 0.842	 and	 0.847	 were	 found,	

respectively.	 	The	differences	in	girder	deflections	are	reflected	in	these	numbers.	 	 It	was	

also	 found	 that	 obtaining	 pseudo	 modal	 flexibility	 from	 the	 other	 ambient	 input	 types	

proved	 to	be	of	no	use.	 	Overall,	while	 the	PIRF	method	was	useful	 for	 identifying	mode	

shapes	and	natural	frequencies,	the	pseudo	modal	flexibility	obtained	was	dissimilar	to	the	

flexibilities	obtained	though	the	other	testing	methods.		

After	reviewing	the	results	of	the	different	ambient	testing	techniques,	it	was	decided	

that	two	different	input	sources	would	be	used	for	the	damage	scenarios	implemented	on	

the	grid	structure:	quiet	input	and	coupled	shaker	input.	 	These	two	input	types,	utilizing	

both	ambient	post‐processing	techniques	explained	previously,	were	to	be	compared	with	

the	other	testing	methods	(impact	and	shaker)	to	evaluate	the	best	method	of	obtaining	a	

post‐damage	characterization.			
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Figure	5.33:	FRF	at	E1	from	Ambient	PIRF	Data	

	

5.5 EXPERIMENTAL	OPTIMIZATION	AND	PARTICIPATION	STUDIES	

Of	 the	 different	 input	 sources	 used,	 shaker	 testing	 proved	 to	 be	 the	 most	 time	

consuming	and	most	difficult	 to	set	up.	 	The	shaker	had	to	be	moved	 from	node	to	node,	

each	time	uncoupling	from	one	location	and	re‐coupling	to	the	next	location.		After	running	

the	 given	 test	 at	 that	 location,	 the	moving/setup	 process	 began	 again.	 	 Since	 the	 shaker	

weighs	over	100	lbs,	a	subset	of	 input	 locations	that	would	closely	excite	the	structure	in	

the	same	manner	as	a	full	input	location	test	was	desired	in	order	to	limit	the	moving	and	

setup	 associated	 with	 shaker	 input.	 	 This	 was	 also	 useful	 information	 for	 designing	 an	

optimal	 structural	 health	 monitoring	 strategy,	 since	 having	 fewer	 input	 locations	 was	

desirable.	 	 According	 to	 a	 preliminary	 study	 done	 in	 SAP2000	 the	 highest	 contributing	

modes	 were	 thought	 to	 be	 1st	 Bending	 Mode	 and	 3rd	 Bending	 Mode,	 with	 the	 butterfly	

0 20 40 60 80 100 120
10

-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

10
1

10
2

Freq [Hz]

Lo
g-

M
ag

 [
g]

 

 

H1



134	

	

modes	contributing	slightly	to	the	overall	flexibility.		It	followed	that	applying	input	to	the	

structure	that	excites	these	modes	specifically	would	be	of	the	most	importance.		Working	

with	this	assumption,	applying	an	input	at	line	‘B’,	line	‘D’,	and	line	‘F’	would	excite	1st	and	

3rd	bending	modes,	whereas	applying	input	at	lines	‘C’	and	‘E’	would	not	excite	3rd	bending	

mode	(see	Figure	5.34).		This	was	employed	by	taking	the	full	shaker	data	set,	and	deleting	

columns	from	the	FRF	matrix	in	order	to	delete	input	locations,	thus	preserving	the	same	

errors	 or	 noise	 present	 from	 the	 full	 test.	 	 Seven	 different	 cases	 were	 employed	 to	

experimentally	verify	the	analysis	from	SAP2000,	and	are	shown	in	Figure	5.35.				

	

	
Figure	5.34:	Nodal	Movements	due	to	Bending	Modes	
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Figure	5.35:	Input	Optimization	Study	Cases	
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By	 comparing	 the	 resulting	 deflection	 profiles	 produced	 from	 each	 of	 the	 load	 cases	

presented	in	Figure	5.35,	it	was	found	that	Cases	1‐3	produced	plots	that	were	very	far	off	

from	 the	 full	 input	 plots.	 	 This	 showed	 that	 the	 assumptions	 derived	 from	 the	 SAP2000	

analysis	 proved	 to	 be	 wrong.	 	 Additional	 input	 scenarios	 were	 tested,	 and	 Cases	 5‐7	

produced	 the	 closest	 representation,	 with	 cases	 six	 and	 seven	 each	 producing	 a	 nearly	

identical	 representation	 when	 compared	 to	 the	 full	 data	 set.	 	 This	 exercise	 proved	 that	

blindly	following	data	produced	from	an	analytical	model	must	be	done	with	great	caution.		

The	 analytical	model	 does	 not	 take	 into	 account	 imperfections	 in	materials	 and	 support	

conditions,	 uneven	 bolt	 tightening,	 and	 other	 factors	 inherently	 present	 in	 constructed	

structures.			

The	 results	 found	 from	 this	 study	 were	 further	 verified	 by	 looking	 at	 the	 modal	

contribution	 in	 the	 impact	 test	 data.	 	 An	 experimental	 modal	 truncation	 study	 was	

undertaken.	 	 Since	 modal	 flexibility	 is	 the	 summation	 of	 each	 contributing	 mode	 (Eq.	

(3.11)),	 this	 experimental	 study	was	performed	 calculating	modal	 flexibility	by	 including	

only	mode	1,	then	modes	1	&	2,	then	modes	1,	2,	&	3,	etc.		The	deflection	profiles	from	each	

of	these	cases	were	then	plotted	on	top	of	one	another	and	compared.	 	It	was	found	from	

this	study	that	the	greatest	contributing	modes	were	1st	Bending	and	1st	Torsion,	with	some	

contribution	from	1st	Butterfly.			

By	 experimentally	 performing	 input	 optimization	 and	modal	 contribution	 studies,	 it	

was	 found	 that	 the	analytical	model	produced	 in	SAP2000	did	not	accurately	predict	 the	

experimental	 results.	 	 By	 comparison,	 it	was	 found	 that	 1st	 Bending,	 1st	 Torsion,	 and	 1st	

Butterfly	modes	contributed	the	most	to	modal	flexibility,	and	were	therefore	key	modes	to	
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capture	during	subsequent	testing.		It	was	also	found	that	supplying	input	from	the	shaker	

into	 locations	C3‐D1‐D2‐D3‐E1	produced	nearly	 identical	results	as	supplying	 input	to	all	

locations.	 	 Therefore,	 subsequent	 shaker	 tests	 only	 included	 inputs	 at	 these	 locations,	

whereas	subsequent	impact	tests	included	inputs	at	all	locations	for	comparison	purposes.			

5.6 SUMMARY		

The	 undamaged	 grid	 model	 was	 extensively	 tested	 in	 order	 to	 obtain	 a	 baseline	

characterization	 to	 be	 used	 for	 future	 comparison	 of	 the	 damage	 scenarios.	 	 Static	 load	

testing	was	used	to	update	the	analytical	model	created	in	SAP2000,	even	though	some	of	

the	 static	measurements	 contained	 experimental	 errors.	 	 The	 analytical	model	was	 then	

used	 as	 a	 starting	 tool	 for	 finding	 the	 possible	 locations	 of	 natural	 frequencies	 and	 for	

providing	insight	into	modal	contributions.			

Dynamic	 testing	 was	 carried	 out	 utilizing	 three	 different	 input	 sources	 in	 order	 to	

compare	 the	effectiveness	of	each	 type	of	 input,	 and	 is	 summarized	 in	Table	5.5.	 	During	

impact	and	shaker	testing	the	input	force	was	measured,	whereas	during	ambient	testing	

the	 input	 force	was	not	measured.	 	Both	 impact	and	shaker	testing	provided	very	similar	

natural	frequencies	and	mode	shapes,	and	provided	a	modal	flexibility	matrix	within	5.5%	

of	 each	 other.	 	 The	 modal	 flexibility	 from	 the	 impact	 test	 was	 around	 14%	 from	 the	

analytical	and	static	models	due	to	modal	truncation	and	was	considered	acceptable.			

The	ambient	vibration	testing	provided	similar	natural	frequencies	and	mode	shapes,	

and	produced	an	un‐scaled	pseudo	modal	flexibility.		Using	a	MAC	value	comparison	of	the	

deflection	 profiles,	 this	 pseudo	 flexibility	 was	 found	 to	 be	 dissimilar	 to	 the	 flexibility	
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derived	 from	 impact	 and	 shaker	 testing.	 	 The	 pseudo	 flexibility	 produced	 girder	 line	

deflections	 that	 contained	 the	 general	 shape	 of	 the	 deflection,	 but	 varied	 significantly	 in	

amplitude	from	girder	to	girder.			

Input	 optimization	 and	 modal	 contribution	 studies	 were	 performed	 experimentally	

and	it	was	found	that	the	analytical	model	produced	in	SAP2000	did	not	accurately	predict	

the	experimental	results.		By	comparison,	it	was	found	that	1st	Bending,	1st	Torsion,	and	1st	

Butterfly	modes	contributed	the	most	to	modal	flexibility,	and	were	therefore	key	modes	to	

capture	during	subsequent	testing.		It	was	also	found	that	supplying	input	from	the	shaker	

into	 the	 right	 subset	of	 the	 total	 locations	produced	nearly	 identical	 results	 as	 supplying	

input	to	all	locations.			
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Table	5.5:	Undamaged	Grid	Summary	
	

	

	

	

	
Natural	Frequencies	

[Hz]	
	 Mode	
Number	

Mode	
Description	

Analytical	
Model	

Impact	
Test	

Shaker	
Test	

Ambient	
Test	

	 1	 1st	Bending	 9.172	 9.570	 9.521	 9.609	
	 2	 1st	Torsion	 10.015	 10.958	 10.948	 10.853	
	 3	 2nd	Bending	 36.229	 34.714	 34.699	 35.883	
	 4	 2nd	Torsion	 39.629	 38.996	 39.023	 38.914	
	 5	 3rd	Bending	 78.791	 72.831	 72.645	 69.295	
	 6	 1st	Butterfly	 83.583	 80.058	 80.366	 80.032	
	 7	 3rd	Torsion	 87.394	 82.695	 82.787	 85.354	
	 8	 2nd	Butterfly	 91.117	 88.324	 88.737	 88.381	
	 	
	

	
Damping	
[%]	

	 Mode	
Number	

Mode	
Description	

Analytical	
Model	

Impact	
Test	

Shaker	
Test	

Ambient	
Test	

	 1	 1st	Bending	 ‐	 1.37	 1.10	 ‐	
	 2	 1st	Torsion	 ‐	 1.32	 1.14	 ‐	
	 3	 2nd	Bending	 ‐	 0.94	 1.12	 ‐	
	 4	 2nd	Torsion	 ‐	 0.70	 0.76	 ‐	
	 5	 3rd	Bending	 ‐	 1.03	 1.18	 ‐	
	 6	 1st	Butterfly	 ‐	 0.85	 0.78	 ‐	
	 7	 3rd	Torsion	 ‐	 1.15	 1.05	 ‐	
	 8	 2nd	Butterfly	 ‐	 0.89	 0.84	 ‐	
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6. CHARACTERIZATION	OF	A	DAMAGED	GRID	MODEL	

In	 order	 to	 validate	 the	 testing	 and	 analysis	 methods	 described	 in	 the	 previous	

chapters,	 as	well	 as	 the	 applicability	 of	 using	modal	 flexibility	 to	 quantify	 damage,	 three	

different	damage	scenarios	were	implemented	on	the	grid	model.	For	each	damage	case	all	

of	 the	 previously	 described	 dynamic	 testing	 methods	 (impact,	 shaker,	 and	 ambient	

vibration)	were	 implemented	 in	the	same	manner	as	on	the	undamaged	grid	model.	This	

way,	a	direct	comparison	was	able	to	be	made	between	the	damaged	and	undamaged	grid	

models,	and	insight	was	found	regarding	the	effectiveness	of	modal	flexibility	as	a	damage	

detection	and	quantification	tool.	

The	 three	 damage	 cases	 chosen	 represent	 possible	 failures	 that	 could	 occur	 due	 to	

some	hazard	event.		Damage	Case	#1	was	the	removal	of	a	bearing	support.		This	damage	

represented	 not	 only	 a	 loss	 of	 bearing,	 but	 could	 be	 extended	 to	 represent	 support	

settlement,	scour,	or	abutment	movement	due	to	a	 large	 lateral	 impact.	 	Damage	Case	#2	

was	the	removal	of	two	transverse	beams,	which	may	represent	some	sort	of	change	in	the	

deck	structure	or	other	lateral	stiffness	member.	 	Damage	Case	#3	was	the	removal	of	all	

gusset	plates	at	six	nodes.		This	would	represent	a	loss	of	stiffness,	possibly	due	to	a	blast	

type	 load.	 	 Each	 of	 these	 damage	 scenarios	 were	 fully	 tested	 and	 compared	 with	 the	

undamaged	grid	characterization	and	with	each	other.	

The	 finite	 element	 model	 of	 the	 grid	 was	 also	 updated	 with	 each	 of	 the	 damage	

scenarios	 in	 order	 to	 validate	 the	 responses	 obtained	 through	 dynamic	 testing.	 	 In	 each	
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Impact	testing	was	implemented	in	the	exact	same	manner	as	with	the	undamaged	grid	

model.	 	The	same	number	of	hits,	 same	averaging,	same	rubber	 impact	 tip,	and	the	same	

sampling	frequency	were	all	used.		When	the	FRFs	were	processed	into	a	CMIF,	the	peaks	

were	very	 clean	and	distinguishable,	 as	 seen	 in	Figure	6.2.	 	The	most	 important	 thing	 to	

note	about	this	CMIF	plot	is	that	when	compared	to	the	undamaged	grid,	some	of	the	peaks	

changed	locations,	and	two	new	peaks	appeared.		Each	of	these	peaks	produced	the	mode	

shapes	seen	in	Figure	6.3,	with	the	far	back	right	corner	representing	location	G3.		Several	

of	the	mode	shapes	seem	to	be	similar	to	the	undamaged	grid,	but	when	one	looks	closely,	

the	support	can	be	seen	moving	in	many	of	the	modes.		These	mode	shapes	clearly	showed	

the	damage	applied	to	the	structure.		

Evidence	of	 a	 change	 in	 the	 structural	 characteristics	of	 the	grid	was	evident	 in	 that	

two	new	mode	shapes	appeared,	one	at	approximately	29	Hz	and	one	at	approximately	48	

Hz.	 	As	seen	 in	Figure	6.3,	 the	 first	new	mode	could	be	described	as	girder	#1	remaining	

stationary	while	girder	#3	bent	in	a	2nd	bending	type	of	shape.	 	It	can	be	seen	that	in	this	

bending	mode	 that	 the	 end	 of	 the	 beam	was	 far	 away	 from	 the	 support	 at	 location	 G3,	

which	 was	 the	 removed	 support.	 	 The	 second	 new	 mode	 appeared	 to	 take	 on	 the	

characteristics	of	 torsion,	with	 the	node	at	G3	moving	with	much	greater	amplitude	 than	

the	rest	of	the	structure.			
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Figure	6.2:	CMIF	Plot	–	Impact	Test	for	Damage	Case	#1	
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implemented	at	G3	was	able	to	be	detected.		While	many	of	the	mode	shapes	looked	similar	

to	the	undamaged	case,	the	majority	of	them	showed	significant	movement	of	the	node	at	
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support	G3,	indicating	damage.		This,	along	with	the	new	mode	shapes	and	shifts	in	natural	

frequencies,	pointed	to	the	damage	inflicted.	

	

	

	

	
Figure	6.3:	Experimental	Mode	Shapes	from	Damage	Case	#1	
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This	damage	scenario	was	also	modeled	in	SAP2000	by	removing	the	support	at	node	

G3.		A	static	analysis	was	performed	to	obtain	a	flexibility	matrix.		Dynamic	modal	analysis	

was	 also	 performed	 and	 mode	 shapes	 that	 were	 very	 similar	 to	 those	 found	 from	

experimental	 testing	were	 found,	 including	 the	 two	 new	modes	 (Figure	 6.4).	 	 Two	main	

differences	were	 found	 between	 the	 analytical	model	 and	 the	 experimental	model.	 	 The	

first	 was	 that	 the	 frequencies	were	 generally	 higher	 in	 the	 analytical	model	 and	 shifted	

farther	 away	 in	 the	 higher	 modes.	 	 The	 second	 difference	 was	 with	 respect	 to	 the	 2nd	

bending	and	2nd	torsion	mode	shapes	found	experimentally.	 	 In	the	analytical	model	only	

one	mode	was	found	at	37.8	Hz,	whereas	in	the	experimental	model	two	were	found	(33.9	

Hz	and	37.3	Hz).			
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Figure	6.5:	Input	Signal	for	Shaker	Testing	
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previous	shaker	testing,	the	additional	noise	was	attributed	to	the	change	in	hardware	used	

for	data	collection.	 	From	the	shaker	 test,	 the	same	peaks	were	noted,	 including	 the	new	

modes	present	at	approximately	29	Hz	and	approximately	48	Hz.		Similar	mode	shapes	and	

frequencies	were	 found	 from	the	post‐processing	of	 the	data,	and	a	modal	 flexibility	was	

found.	 	 Since	 the	 modal	 flexibility	 from	 the	 shaker	 test	 was	 found	 from	 only	 five	 input	

locations,	the	impact	data	was	also	processed	with	the	same	five	inputs	in	order	to	have	an	

equal	 comparison	 between	 the	 different	 types	 of	 tests.	 	 Figure	 6.7	 shows	 the	 deflection	

profiles	 of	 the	modal	 flexibility	with	 the	undamaged	grid	 impact	 test	 as	 a	 reference,	 and	

three	deflections	from	the	first	damage	case:	full	impact	test,	five	location	impact	test,	and	

five	location	shaker	test.		As	seen	from	the	figure,	the	full	impact	plot	is	very	comparable	to	

the	impact	plot	from	using	only	five	inputs.		The	shaker	test	showed	to	deflect	slightly	more	

than	the	impact	tests,	but	was	within	reason.	 	An	important	thing	to	note	from	the	modal	

flexibility	deflection	profiles	was	the	clear	display	of	damage	located	on	the	third	girder,	at	

the	 end.	 	 The	 deflection	 plots	 all	went	 to	 zero	 at	 the	 ends	 except	 for	 the	 end	where	 the	

support	 was	 removed.	 	 Though	 this	 value	 may	 not	 be	 fully	 quantifiable,	 it	 clearly	

demonstrates	the	damage	induced	into	the	structure,	and	is	of	great	value.			
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Figure	6.6:	CMIF	Plot	–	Shaker	Test	for	Damage	Case	#1	
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Figure	6.7:	Deflection	Profiles	for	Damage	Case	#1	
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order	to	process	the	data	with	the	CMIF	algorithm	developed.		The	goal	was	to	compare	the	

effectiveness	of	the	different	processing	techniques,	as	well	as	to	investigate	whether	or	not	

a	correlation	could	be	made	between	the	ambient	 test	results	and	the	 impact	and	shaker	

test	results.			

The	quiet	 input	provided	a	noisy	normalized	PSD,	as	 seen	 in	Figure	6.8,	which	made	

peak	 picking	 especially	 difficult.	 	 Peak	 picking	 was	 the	 method	 used	 to	 obtain	 modal	

frequencies	 and	 modal	 vectors	 (mode	 shapes)	 for	 the	 given	 data	 set.	 	 Each	 peak	 may	

represent	a	natural	frequency	with	a	corresponding	mode	shape.		By	looking	closely	at	the	

amplitude	of	the	peak	as	well	as	the	mode	shapes	plotted,	one	can	determine	if	the	chosen	

peak	is	indeed	a	natural	frequency.		Since	so	many	peaks	were	present	in	the	noisy	data	set,	

finding	natural	frequencies	was	difficult,	but	not	impossible.		When	the	PIRFs	were	created	

in	order	to	use	the	CMIF	processing	techniques,	the	quiet	input	data	produced	a	CMIF	plot	

that	 did	 not	 clearly	 show	 each	mode,	 as	 seen	 in	 Figure	 6.9.	 	 In	 fact,	 when	 the	 data	was	

processed	 further,	 seven	of	 the	 ten	mode	 shapes	 chosen	 ended	up	 representing	 the	new	

mode	at	29	Hz,	as	shown	earlier.		This	new	mode	dominated	the	response	of	the	structure,	

thus	 indicating	damage,	 but	 not	 in	 the	way	 expected.	 	With	 the	 impact	 and	 shaker	 tests,	

each	mode	was	clearly	evident	and	several	of	the	modes	showed	the	damage	whereas	with	

ambient	processing,	one	mode	dominated	the	spectrum.	
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Figure	6.8:	NPSD	–	Ambient	Quiet	Input	for	Damage	Case	#1	

	

	
Figure	6.9:	CMIF	Plot	–	Ambient	Quiet	Input	for	Damage	Case	#1	
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The	coupled	ambient	input,	on	the	other	hand,	provided	very	good	excitation	and	clear	

peaks	 in	 the	 normalized	 PSD	 seen	 in	 Figure	 6.10.	 	 These	 sharp	 peaks	 produced	 clear	

natural	 frequencies	 and	 corresponding	 mode	 shapes.	 	 All	 of	 the	 modes	 found	 from	 the	

measured	 input	 tests,	with	 the	exception	of	2nd	Bending	Mode,	were	present	 in	 the	data.		

When	processed	using	 correlation	 functions	 into	PIRFs,	 the	CMIF	plot	 showed	very	 clear	

peaks	at	all	of	the	modes	of	the	structure	and	can	be	seen	in	Figure	6.11.		These	two	plots	

showed	a	noticeable	contrast	when	compared	to	the	quiet	input,	and	pointed	to	the	better	

excitation	of	the	modes	of	the	structure	from	the	coupled	input.		Using	the	CMIF	algorithm	

to	 identify	 modal	 parameters	 proved	 to	 be	 ineffective.	 	 The	 1st	 bending	 and	 1st	 torsion	

modes	 switched	 locations,	 and	 several	 of	 the	 other	 modes	 were	 out	 of	 place	 or	 non‐

existent.	 	 These	 discrepancies	 were	 also	 noted	 in	 the	 enhanced	 frequency	 response	

functions	(eFRFs),	which	were	supposed	to	isolate	each	mode	and	decouple	the	system	into	

a	series	of	SDOF	systems.		The	eFRFs	did	not	properly	decouple	the	system,	and	the	peaks	

did	not	show	up	where	expected.	

Overall,	the	coupled	shaker	input	provided	a	much	better	excitation	of	the	modes	of	the	

structure	when	compared	to	quiet	excitation.	 	Clear	mode	shapes	and	natural	frequencies	

were	 found	from	the	PSD	method	which	were	very	comparable	to	 the	 impact	and	shaker	

tests	 performed.	 	 The	 CMIF	 method	 of	 processing	 proved	 to	 be	 ineffective	 in	 properly	

identifying	mode	shapes	and	natural	frequencies,	with	either	type	of	ambient	input.			
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Figure	6.10:	NPSD	–	Ambient	Coupled	Input	for	Damage	Case	#1	

	

	
Figure	6.11:	CMIF	Plot	–	Ambient	Coupled	Input	for	Damage	Case	#1	
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Impact	testing	was	implemented	in	the	exact	same	manner	as	with	the	undamaged	grid	

model.			When	the	FRFs	were	processed	into	the	CMIF	spectrum,	the	peaks	were	very	clean	

and	sharp,	as	seen	in	Figure	6.13.	 	Overall,	 the	mode	shapes	and	frequencies	were	nearly	

unchanged	 from	 the	 undamaged	 grid	model,	with	 two	 key	 exceptions.	 	 The	 1st	 butterfly	

mode	 shifted	 significantly,	 from	 80	 Hz	 to	 64	 Hz.	 	 Also,	 a	 new	 mode	 appeared	 in	 the	

experimental	 data	 at	 around	 59	 Hz	 that	 was	 similar	 to	 the	 butterfly	 mode,	 except	 with	

inverted	bending	near	the	transverse	beam	D.	 	These	mode	shapes	can	be	seen	 in	Figure	

6.14.		Other	than	these	two	changes,	the	evidence	of	this	damage	case	was	unseen.			

	

	
Figure	6.13:	CMIF	Plot	–	Impact	Test	for	Damage	Case	#2	
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Figure	6.14:	Experimental	Mode	Shapes	from	Damage	Case	#2	
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Shaker	testing	was	implemented	for	the	second	damage	case.		The	resulting	CMIF	from	

the	 shaker	 test	 again	 showed	 to	 be	 noisier	 than	 the	 impact	 test	 results,	 even	 with	 ten	

averages	 taken	 (Figure	 6.16).	 	 This	 slight	 jump	 in	 noise	was	 attributed	 to	 the	 change	 in	

hardware	used	for	data	collection.		The	same	peaks	were	present,	as	well	as	the	new	mode	

at	59	Hz.		Similar	mode	shapes	and	frequencies	were	found	from	the	remaining	processing,	

and	modal	flexibility	was	found.		The	deflection	profiles	of	the	modal	flexibility	are	plotted	

in	Figure	6.17	with	 the	undamaged	grid	 impact	 test	as	a	 reference,	and	 three	deflections	

from	the	second	damage	case:	 full	 impact	 test,	 five	 location	 impact	 test,	and	 five	 location	

shaker	test.		As	seen	from	the	figure,	the	full	impact	plot	is	very	comparable	to	the	impact	

plot	from	using	only	five	inputs.		The	shaker	test	however,	showed	to	deflect	considerably	

more	 than	 the	 impact	 tests,	 and	 was	 not	 as	 close	 to	 the	 five	 input	 impact	 test	 as	 was	

expected.	 	When	 compared	with	 all	 the	 different	 shaker	 tests	 performed	 for	 all	 damage	

cases,	this	deflection	was	in‐line	with	expectation,	and	is	further	discussed	in	Section	6.4.			
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Figure	6.16:	CMIF	Plot	–	Shaker	Test	for	Damage	Case	#2	

	
Figure	6.17:	Deflection	Profiles	for	Damage	Case	#2	
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As	with	the	first	damage	case,	a	series	of	ambient	tests	were	also	performed	on	the	grid	

while	 in	 the	 second	 damage	 case	 configuration.	 	 The	 quiet	 input	 provided	 a	 noisy	

normalized	PSD,	as	seen	in	Figure	6.18,	but	was	less	noisy	than	the	previous	damage	case	

with	 the	 natural	 peaks	 more	 evident.	 	 Peak	 picking	 was	 somewhat	 difficult,	 but	

manageable,	and	produced	decent	mode	shapes	and	natural	frequencies.		When	the	PIRFs	

were	created	in	order	to	use	the	CMIF	processing	techniques,	the	quiet	input	data	produced	

a	CMIF	plot	 that	did	not	 show	the	 first	 two	modes	as	 clearly	as	 the	others	 (Figure	6.19).		

When	 the	 data	was	 processed	 further,	 several	 of	 the	modes	 did	 not	 appear,	 and	 several	

modes	showed	the	structure	leaving	the	supports.	

	

	
Figure	6.18:	NPSD	–	Ambient	Quiet	Input	for	Damage	Case	#2	
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Figure	6.19:	CMIF	Plot	–	Ambient	Quiet	Input	for	Damage	Case	#2	
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butterfly	 mode	 showed	 up	 at	 four	 distinct	 locations,	 and	 dominated	 the	 output	 of	 the	

structure.	 	 While	 the	 regular	 FRFs	 were	 clear,	 these	 discrepancies	 did	 show	 up	 in	 the	

eFRFs.	 	 The	 eFRFs	 did	 not	 decouple	 the	 system	 and	 the	 peaks	 did	 not	 show	 up	 where	

expected.	

Overall,	the	coupled	shaker	input	provided	much	clearer	excitation	of	the	modes	of	the	

structure	when	compared	to	quiet	excitation.	 	Clear	mode	shapes	and	natural	frequencies	

were	 found	from	the	PSD	method	which	were	very	comparable	to	 the	 impact	and	shaker	

tests	 performed.	 	 The	 CMIF	 method	 of	 processing	 proved	 to	 be	 ineffective	 in	 properly	

identifying	mode	shapes	and	natural	frequencies	with	either	type	of	ambient	input.			

	

	
Figure	6.20:	NPSD	–	Ambient	Coupled	Input	for	Damage	Case	#2	
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Figure	6.21:	CMIF	Plot	–	Ambient	Coupled	Input	for	Damage	Case	#2	
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physical	characteristics	of	the	system	such	as	member	depth,	distance	between	nodes,	and	

stiffness	of	the	members.	

Impact	testing	was	implemented	in	the	exact	same	manner	as	with	the	undamaged	grid	

model.			When	the	FRFs	were	processed	into	the	CMIF	spectrum,	the	peaks	were	very	clean	

and	sharp,	as	seen	in	Figure	6.23.		All	of	the	mode	shapes	from	the	CMIF	plot	can	be	seen	in	

Figure	 6.24.	 	 Several	 items	 of	 importance	 should	 be	 noted	 here.	 	 First,	 several	 peaks	

changed	locations	from	the	undamaged	grid	model,	most	notably	the	first	butterfly	moved	

from	80	Hz	to	44	Hz.	 	It	can	also	be	seen	that	the	shape	of	the	butterfly	mode	changed	to	

become	 centered	 around	 transverse	 lines	 ‘D’	 and	 ‘E,’	 giving	 evidence	 of	 the	 damage	

inflicted.		Also,	at	between	82	Hz	and	83	Hz	two	peaks	can	be	seen	in	the	CMIF	plot,	though	

not	 on	 the	 same	 line.	 	 One	 of	 the	 benefits	 of	 using	 the	 CMIF	 algorithm	 is	 the	 ability	 to	

distinguish	 closely	 spaced	modes	 by	using	modal	 filter	 vectors	 to	 isolate	 each	 individual	

mode.		From	further	processing,	the	two	mode	shapes	were	determined	to	be	2nd	Butterfly	

Mode	and	3rd	Torsion	Mode.		Other	methods	were	not	able	to	distinguish	these	two	closely	

spaced	modes.			
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Figure	6.24:	Experimental	Mode	Shapes	from	Damage	Case	#3	
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The	 resulting	CMIF	 from	 the	 shaker	 test	 again	 showed	 to	be	noisier	 than	 the	 impact	

test	results,	even	with	ten	averages	taken.	 	The	shaker	CMIF	also	showed	the	two	closely	

spaced	modes,	just	as	the	impact	CMIF	did.		All	of	the	same	peaks	were	present,	including	

the	shift	in	the	butterfly	mode.		Similar	mode	shapes	and	frequencies	were	found	from	the	

remaining	processing,	and	modal	flexibility	was	found.		Deflection	profiles	similar	to	ones	

previously	presented	did	not	easily	show	the	change	 from	the	damage	case.	 	Therefore	a	

different	 type	 of	 deflection	 profile	 was	 implemented,	 and	 can	 be	 seen	 in	 Figure	 6.26.		

Instead	 of	 showing	 deflection	 by	 girder	 line,	 this	 deflection	 profile	 shows	 all	 nodes	

together.	 	 Node	 one	 represents	 location	 A1,	 node	 two	 location	 A2,	 and	 so	 on.	 	 One	 can	

notice	 that	 the	 deflection	 from	 one	 end	 of	 the	 girder	 to	 the	 other	 end	was	 asymmetric,	

indicating	the	damage	inflicted	by	the	removal	of	the	gusset	plates.		This	resulted	in	a	local	

loss	of	stiffness,	which	caused	the	girders	to	deflect	farther	near	the	‘E’	and	‘F’	beams.		This	

same	shift	was	noticed	in	1st	Butterfly	Mode,	as	noted	earlier.	
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Figure	6.26:	Deflection	Profiles	for	Damage	Case	#3	
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Figure	6.27:	NPSD	–	Ambient	Quiet	Input	for	Damage	Case	3	

	

	
Figure	6.28:	CMIF	Plot	–	Ambient	Quiet	Input	for	Damage	Case	#3	

	

0 20 40 60 80 100 120
10

-4

10
-3

10
-2

10
-1

10
0

10
1

NPSD Grid Ambient Data  quiet

Frequency (Hz)

P
S

D
 (

g2 /H
z)

0 20 40 60 80 100 120
10

-10

10
-8

10
-6

10
-4

10
-2

10
0

10
2

CMIF Plot

Hz

A
m

pl
itu

de



172	

	

The	 coupled	 ambient	 input	 provided	 very	 good	 excitation	 and	 clear	 peaks	 in	 the	

normalized	PSD	seen	in	Figure	6.29.		These	peaks	produced	clear	natural	frequencies	and	

corresponding	mode	shapes.	 	All	of	the	modes	found	from	the	measured	input	tests	were	

present	in	the	data,	with	one	exception.		In	the	proximity	of	82	Hz,	both	2nd	Butterfly	Mode	

and	3rd	Torsion	Mode	were	found	from	the	impact	and	shaker	tests.		As	noted	earlier,	one	

benefit	 of	 the	 CMIF	 algorithm	 is	 the	 ability	 to	 distinguish	 closely	 spaced	modes	 such	 as	

these.		When	using	the	PSD	method,	these	two	modes	became	meshed	together	to	make	a	

hybrid	mode	which	contained	elements	of	both	mode	shapes,	and	was	therefore	difficult	to	

distinguish.	 	 The	 CMIF	 plot	 showed	 relatively	 clear	 peaks	 at	 all	 of	 the	 modes	 of	 the	

structure,	including	the	two	peaks	near	82	Hz.		The	CMIF	plot	can	be	seen	in	Figure	6.30.		In	

this	instance,	the	CMIF	algorithm	was	able	to	distinguish	the	two	closely	spaced	modes	at	

82	 Hz,	 but	 had	 trouble	 identifying	 modes	 at	 other	 frequencies.	 	 1st	 Bending	 Mode	 was	

replaced	by	1st	Torsion	Mode,	1st	Butterfly	Mode	showed	up	at	two	locations,	and	several	

other	modes	were	not	clearly	identifiable.		Due	to	these	discrepancies	the	CMIF	algorithm	

was	not	able	to	identify	modal	parameters	effectively.	

	Overall,	the	coupled	shaker	input	provided	much	clearer	excitation	of	the	modes	of	the	

structure	when	compared	to	quiet	excitation.	 	Clear	mode	shapes	and	natural	frequencies	

were	 found	which	were	very	comparable	 to	 the	 impact	and	shaker	 tests	performed	 from	

the	PSD	method,	with	the	exception	of	the	two	closely	spaced	modes	near	82	Hz.		The	CMIF	

method	 of	 processing	 proved	 to	 be	 less	 effective	 in	 properly	 identifying	 all	 of	 the	mode	

shapes	and	natural	frequencies	with	either	type	of	ambient	input.			
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Figure	6.29:	NPSD	–	Ambient	Coupled	Input	for	Damage	Case	#3	

	
Figure	6.30:	CMIF	Plot	–	Ambient	Coupled	Input	for	Damage	Case	#3	
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6.4 SUMMARY	

In	 order	 to	 validate	 the	 testing	 and	 analysis	 methods	 described	 in	 the	 previous	

chapters,	 as	well	 as	 the	 applicability	 of	 using	modal	 flexibility	 to	 quantify	 damage,	 three	

different	damage	scenarios	were	 implemented	on	the	grid	model.	 	For	each	damage	case,	

several	 dynamic	 testing	 methods	 were	 implemented	 including	 impact	 testing,	 shaker	

testing,	and	ambient	vibration	testing.		

The	 three	damage	 cases	were	 chosen	 to	 represent	 a	 few	possible	 failures	 that	 could	

occur	due	to	some	hazard	event.	 	Damage	Case	#1	was	the	removal	of	a	bearing	support.		

Damage	 Case	 #2	 was	 the	 removal	 of	 two	 transverse	 beams.	 	 Damage	 Case	 #3	 was	 the	

removal	of	the	gusset	plates	at	six	nodes.		Each	of	these	damage	scenarios	were	fully	tested	

and	compared	with	the	undamaged	grid	characterization	and	with	each	other.	

The	 finite	 element	 model	 of	 the	 grid	 was	 also	 updated	 with	 each	 of	 the	 damage	

scenarios	 in	 order	 to	 validate	 the	 responses	 obtained	 through	 dynamic	 testing.	 	 In	 each	

case,	the	damage	was	able	to	be	detected	in	the	mode	shapes	and	frequencies	of	both	the	

FE	model	and	the	experimental	model.		In	general,	the	natural	frequencies	found	from	the	

FE	model	were	slightly	higher	than	the	frequencies	found	experimentally,	with	the	margin	

of	difference	increasing	with	higher	modes.		Table	6.1,	Table	6.2,	and	Table	6.3	summarize	

the	 natural	 frequencies	 found	 from	 each	 damage	 scenario.	 	 From	 these	 tables,	 one	 can	

clearly	 see	 that	 all	 three	 experimental	 methods	 resulted	 in	 nearly	 identical	 natural	

frequencies,	 showing	 agreement	 and	 confidence	 in	 the	 testing	 methods.	 	 The	 resulting	

mode	 shapes	 obtained	 at	 each	 of	 the	 natural	 frequencies	 (shown	 previously)	 displayed	
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much	similarity	between	testing	methods.		Natural	frequencies	and	mode	shapes	were	able	

to	be	qualitatively	identified	and	located	from	the	damage	in	the	structure.			

	

	

	

Table	6.1:	Natural	Frequencies	from	Damage	Case	#1	
Natural	Frequencies

[Hz]	

Mode	
Mode	

Description	
Undamaged	

Grid	
Impact	
Test	

Shaker	
Test*	

Ambient	
Test	

Analytical	
Model	

1	 1st	Bending	 9.570	 8.710	 8.741	 8.870	 9.0238	

2	 1st	Torsion	 10.958	 10.588	 10.633	 10.742	 9.8467	

3	 New	Mode	1	 ‐	 28.943	 29.038	 29.297	 32.099	

4	 2nd	Bending	 34.714	 33.982	 34.331	 ‐	 ‐	

5	 2nd	Torsion	 38.996	 37.342	 38.223	 36.051	 37.819	

6	 New	Mode	2	 ‐	 47.675	 47.799	 47.689	 54.454	

7	 3rd	Bending	 72.831	 72.915	 73.759	 73.731	 80.401	

8	 1st	Butterfly	 80.058	 80.053	 80.091	 79.590	 83.591	

9	 3rd	Torsion	 82.695	 86.237	 86.259	 86.507	 90.653	

10	 2nd	Butterfly	 88.324	 88.862	 ‐	 88.704	 93.851	
11	 3rd	Butterfly	 ‐	 112.02	 113.60	 113.36	 119.51	

*	From	PSDs	with	Coupled	Input	
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Table	6.2:	Natural	Frequencies	from	Damage	Case	#2	
Natural	Frequencies

[Hz]	

Mode	
Mode	

Description	
Undamaged	

Grid	
Impact	
Test	

Shaker	
Test*	

Ambient	
Test	

Analytical	
Model	

1	 1st	Bending	 9.570	 9.750	 9.819	 9.928	 9.900	

2	 1st	Torsion	 10.958	 11.314	 11.325	 11.393	 10.593	

3	 2nd	Bending	 34.714	 34.664	 34.721	 34.831	 36.229	

4	 2nd	Torsion	 38.996	 38.823	 38.969	 38.900	 39.626	

5	 New	Mode	1	 ‐	 59.793	 58.601	 58.594	 ‐	

6	 1st	Butterfly	 80.058	 64.088	 63.995	 63.477	 69.572	

7	 3rd	Bending	 72.831	 77.141	 77.231	 76.904	 86.150	

8	 3rd	Torsion	 82.695	 85.964	 86.103	 86.426	 91.113	

9	 2nd	Butterfly	 88.324	 88.617	 88.383	 88.379	 92.960	

10	 3rd	Butterfly	 ‐	 108.84	 109.22	 109.05	 115.56	
11	 4th	Bending	 ‐	 116.58	 ‐	 117.18	 130.84	

*	From	PSDs	with	Coupled	Input	
	

	

	

Table	6.3:	Natural	Frequencies	from	Damage	Case	#3	
Natural	Frequencies

[Hz]	

Mode	
Mode	

Description	
Undamaged	

Grid	
Impact	
Test	

Shaker	
Test*	

Ambient	
Test	

Analytical	
Model	

1	 1st	Bending	 9.570	 9.336  9.372	 9.440	 9.024 

2	 1st	Torsion	 10.958	 10.945  10.944	 11.068	 9.847 

3	 2nd	Bending	 34.714	 34.585  34.648	 34.668	 32.099 

4	 2nd	Torsion	 38.996	 38.92  39.010	 38.981	 37.819 

5	 1st	Butterfly	 80.058	 43.797  43.759	 43.701	 54.454 

6	 3rd	Bending	 72.831	 72.258  71.750	 72.266	 80.401 

7	 2nd	Butterfly	 88.324	 82.609  82.31	 82.845	 83.591 

8	 3rd	Torsion	 82.695	 82.923  83.076	 82.845	 90.653 

9	 3rd	Butterfly	 ‐	 108.25  107.85	 106.77	 93.851 

10	 4th	Bending	 ‐	 117.79  ‐	 118.49	 119.51 

*	From	PSDs	with	Coupled	Input	
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The	 modal	 flexibility	 matrix	 was	 represented	 by	 deflection	 profiles,	 and	 these	

deflections	were	plotted	for	each	type	of	input	in	order	to	compare	pre‐	and	post‐	damage.		

Figure	6.31	shows	the	compiled	deflection	profiles	 for	all	21	nodes	 for	 the	 finite	element	

model.	 	 It	 can	be	 seen	 that	 the	 second	damage	 case	 did	 not	 change	 the	 flexibility	 in	 any	

noticeable	fashion.		It	can	also	be	seen	that	the	bearing	removal	from	the	first	damage	case	

was	noticeable	different	from	the	undamaged	deflection	profile,	specifically	that	the	third	

girder	 line	deflected	much	more	 than	the	other	 two	girder	 lines.	 	The	resulting	 loss	 from	

Damage	 Case	 #3	 was	 also	 evident	 since	 the	 entire	 profile	 deflected	 more	 than	 the	

undamaged	profile.	

Figure	6.32	shows	the	compiled	deflection	profiles	for	all	21	nodes	for	the	impact	tests	

performed.	 	 It	 is	 clear	 that	 all	 profiles	were	 different,	 pointing	 to	 the	 different	 damages	

imposed	on	the	model.		Between	the	three	different	damage	cases,	the	flexibility	increased	

from	 Damage	 Case	 #1	 to	 Damage	 Case	 #3,	 as	 would	 be	 expected.	 	 The	 loss	 of	 bearing	

support	at	 location	G3	was	very	evident	since	girder	#3	near	the	support	deflected	much	

more	than	all	other	cases.		Interestingly,	all	three	damage	profiles	showed	to	be	less	flexible	

(more	 stiff)	 than	 the	 undamaged	model.	 	 This	 goes	 against	 the	 notion	 that	 the	 damage	

inflicted	 would	 reduce	 stiffness,	 and	 may	 show	 that	 the	 impact	 testing	 method	 is	 less	

accurate	than	the	shaker	input.			

Figure	6.33	shows	the	compiled	deflection	profiles	the	shaker	tests	performed.		As	with	

the	impact	data,	the	three	different	damage	cases	were	very	evident,	yet	began	as	slightly	

more	 stiff	 than	 the	 undamaged	 model.	 	 When	 compared	 to	 the	 SAP2000	 model,	 the	

deflection	profiles	from	the	shaker	tests	showed	to	be	generally	more	representative	than	
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the	 impact	 tests.	 	 Damage	 Case	 #2	 was	 very	 close	 to	 the	 undamaged	 case,	 as	 with	 the	

analytical	model.	 	 Damage	 Case	#1	 showed	 to	 be	 less	 flexible	 at	 girders	#1	 and	#2,	 and	

more	flexible	at	girder	#3.		The	analytical	model	showed	girder	#1	to	be	less	flexible,	and	

both	 girders	#2	 and	#3	 to	 be	more	 flexible	 than	 the	 undamaged	 case.	 	 Damage	 Case	#3	

showed	 the	 entire	 structure	 to	 be	more	 flexible,	which	 seems	 reasonable	 given	 that	 the	

gusset	plates	were	removed,	thus	reducing	the	global	stiffness.		

Overall,	 it	 is	 difficult	 to	 draw	 a	 concrete	 conclusion	 about	 the	 different	 tests.	 	 The	

impact	 test	 showed	 Damage	 Case	 #1	 very	 well,	 but	 was	 stiffer	 in	 all	 cases	 than	 the	

undamaged	test.		The	shaker	tests	showed	similar	results	to	the	analytical	model,	with	the	

exception	of	Damage	Case	#1,	which	was	slightly	less	representative	in	its	shape	than	the	

impact	test.		Fortunately,	both	types	of	inputs	were	accurately	able	to	identify	the	damage	

in	 a	 qualitative	 manner,	 by	 comparing	 the	 mode	 shapes	 and	 frequencies	 between	 the	

damaged	case	to	the	undamaged	case.		Between	these	two	inputs,	the	shaker	test	proved	to	

be	the	best	overall.			
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Figure	6.31:	Deflection	Profiles	from	SAP2000	Model	

	

	
Figure	6.32:	Deflection	Profiles	from	Experimental	Impact	Tests	
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Figure	6.33:	Deflection	Profiles	from	Experimental	Shaker	Tests	

	

Ambient	testing	using	PSDs	to	find	mode	shapes	and	frequencies	provided	an	accurate	

characterization	of	the	structure	with	all	damage	scenarios.	 	The	problem	with	only	using	

PSDs	and	ambient	data	was	that	no	scaling	could	be	found	in	order	to	find	a	scaled	modal	

flexibility.	 	 By	 using	 correlation	 functions,	 one	 was	 able	 to	 produce	 a	 pseudo	 impulse	

response	 function,	 and	was	 then	 able	 to	 use	 the	CMIF	 algorithm	 to	 find	 a	 pseudo	modal	

flexibility.		When	implemented	on	the	grid	model	with	the	damage	cases,	a	representative	

modal	flexibility	could	not	be	found.		The	CMIF	algorithm	tended	to	“smear”	the	data,	and	

provided	only	one	mode	shape	per	frequency	line.		This	smearing	effect	resulted	in	several	

of	 the	mode	shapes	not	appearing.	 	 In	 fact,	 in	each	damage	case,	one	mode	shape	would	

show	up	at	 several	 locations,	 thus	dominating	 the	 response	 found.	 	This	dominant	mode	

‐0.08

‐0.07

‐0.06

‐0.05

‐0.04

‐0.03

‐0.02

‐0.01

0

D
e
fle

ct
io
n 
[in

]

Undamaged

Damage 1

Damage 2

Damage 3

A1 A2 A3

B1 B2 B3 , etc

C

D

E

F

G



181	

	

shape	 pointed	 to	 the	 damage	 inflicted	 on	 the	 grid,	 but	 using	 this	 mode	 shape	 only	 to	

identify	and	quantify	damage	was	not	the	most	robust	method.		Overall,	with	ambient	data	

the	CMIF	algorithm	was	ineffective	at	picking	mode	shapes	and	providing	flexibility,	but	all	

mode	 shapes	 and	natural	 frequencies	were	 able	 to	 be	 found	using	 the	PSD	peak	picking	

method.			

When	 comparing	 the	 input	 types	 used	 in	 ambient	 testing,	 the	 coupled	 shaker	 input	

provided	 a	 much	 clearer	 excitation	 of	 the	 modes	 of	 the	 structure	 than	 quiet	 excitation.		

Clear	mode	shapes	and	natural	 frequencies	were	found	and	were	very	comparable	to	the	

impact	 and	 shaker	 tests	 performed.	 	 Since	 the	 testing	 was	 done	 in	 a	 quiet	 laboratory	

setting,	 it	 is	 expected	 that	 adequate	 excitation	 of	 an	 in‐service	 bridge	would	 be	 possible	

with	using	only	ambient	noise	from	wind,	traffic,	noise,	etc.	 	This	excitation	could	be	used	

with	the	PSD	peak	picking	method	to	adequately	identify	damage	from	some	hazard	event.	
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7. LOAD	RATING	

Thus	far,	all	of	the	comparisons	between	modal	flexibility	cases	have	been	qualitative	

comparisons.	 	 Several	 of	 the	 figures	 were	 represented	 as	 deflection	 profiles	 in	 order	 to	

facilitate	 easy	 comprehension	 of	 the	 complicated	matrix	 type	 results.	 	 In	 order	 to	 better	

serve	 engineers,	 bridge	 owners,	 transportation	 officials,	 and	 emergency	 management	

personnel,	a	more	quantitative	assessment	of	the	state	of	a	bridge	subject	to	a	hazard	event	

was	needed.		In	order	to	achieve	this,	a	modification	to	the	bridge	rating	was	pursued.		

Load	rating	of	bridges	is	performed	according	to	“The	Manual	for	Bridge	Evaluation,”	

published	by	AASHTO	(2008).	 	Section	8.8	of	 the	manual	presents	methods	 to	evaluate	a	

modified	 load	 rating	 through	 static	 load	 testing,	 and	 encompasses	 two	 cases:	 diagnostic	

load	 tests	 and	 proof	 load	 tests.	 	 In	 a	 proof	 load	 test	 the	 structure	 is	 tested	with	 a	 given	

loading	truck,	and	if	no	undesired	effects	are	noted,	that	load	becomes	the	new	proven	load	

rating.		The	proof	loads	provide	a	lower	bound	on	the	load	rating	capacity	of	the	structure	

(AASHTO,	2008).		AASHTO	recommends	that	the	loads	be	increased	incrementally	in	order	

to	verify	 linear‐elastic	behavior.	 	 In	a	diagnostic	test,	 the	full	capacity	of	 the	bridge	 is	not	

tested	 by	 a	 corresponding	 load.	 	 Instead,	 a	 load	 is	 applied	 to	 the	 bridge,	 and	 the	 actual	

measured	 strains	 are	 recorded	 corresponding	 to	 the	 location	 of	 the	 load.	 	 This	 method	

requires	both	strain	measuring	devices	and	a	loading	truck.		The	measured	strains	are	then	

compared	to	 the	 theoretical	strains	due	 to	 the	same	 loading	at	 the	same	 location,	and	an	

adjustment	factor,	K,	 is	 found.	 	This	adjustment	factor	 is	 then	multiplied	by	the	analytical	
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load	rating	to	provide	a	new	adjusted	load	rating	that	can	be	greater	than,	equal	to,	or	less	

than	the	analytical	load	rating.		

It	 should	 be	 noted	 that	 either	 of	 the	 static	 load	 rating	 procedures	 prescribed	 by	

AASHTO	 would	 take	 a	 great	 deal	 of	 time	 to	 implement.	 	 Time	 is	 a	 critical	 concern	 for	

emergency	 response	 and	 recovery	 operations	 following	 hazard	 events.	 	 Developing	 load	

capacity	ratings	by	static	load	testing	of	a	bridge	or	numbers	of	bridges	affected	by	a	hazard	

event	requires	both	expertise	 in	bridge	evaluation	and	testing,	and	heavy	 trucks	must	be	

brought	to	each	test	bridge.	Given	these	logistical	constraints,	establishing	the	load	capacity	

ratings	 for	 bridges	 through	 static	 load	 testing	 would	 not	 be	 the	 optimal	 approach	 for	

supporting	time‐sensitive	emergency	response	and	recovery	operations.		

Given	 that	 static	 load	 testing	 was	 not	 ideal	 for	 rapid	 evaluation,	 dynamic	

characterization	 was	 proposed.	 	 Section	 8.4	 (AASHTO,	 2008)	 provides	 allowance	 for	

dynamic	 testing	 methods	 for	 bridge	 testing,	 but	 gives	 no	 clear	 guidance	 as	 to	 how	 to	

acquire	 or	 interpret	 the	 results.	 	 It	 has	 been	 shown	 previously	 that	 the	 dynamic	

characterization	of	a	structure	 is	directly	related	to	 its	stiffness	and	mass	properties,	and	

thus	provides	insight	into	any	damage	induced	to	the	structure.		In	this	research	project,	a	

method	was	proposed	to	utilize	the	properties	identified	from	dynamic	testing	to	develop	a	

load	rating	modification	factor.		This	proposed	method	is	analogous	to	the	static	diagnostic	

load	testing	method	outlined	by	AASHTO.			
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7.1 OVERVIEW	OF	LOAD	RATING	

An	 adjusted	 load	 rating	 is	 achievable	 through	 the	 steps	 outlined	 in	 AASHTO’s	 “The	

Manual	 for	 Bridge	 Evaluation,”	 (2008)	 and	 is	 further	 explained	 in	 a	 report	 from	 the	

National	 Cooperative	 Highway	 Research	 Program	 (NCHRP	 &	 Lichtenstein,	 1998).	 	 The	

flowchart	 shown	 in	 Figure	 7.1	 provides	 an	 overview	 of	 the	 steps	 required	 to	 obtain	 the	

modified	load	rating,	and	is	derived	from	the	NCHRP	report.		In	a	static	diagnostic	load	test,	

the	measured	strains	are	compared	to	the	theoretical	strains.		Therefore,	in	order	to	obtain	

the	modification	factor,	 the	strains	were	needed	from	the	dynamic	tests	performed.	 	This	

was	achieved	through	the	creation	and	manipulation	of	 the	modal	 flexibility	matrix.	 	The	

details	of	each	step	are	further	described	in	the	following	sections.	

	

	
Figure	7.1:	Modified	Load	Rating	by	Dynamic	Testing	
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7.1.1 Dynamic	Testing	

Dynamic	 testing	 was	 performed	 using	 a	 variety	 of	 methods	 which	 included	 both	

measured	 and	 unmeasured	 inputs.	 	 The	 implementation	 and	 results	 of	 these	 different	

dynamic	tests	were	presented	and	explained	in	previous	chapters.	

7.1.2 Modal	Flexibility	

As	explained	in	Chapter	3,	modal	flexibility	can	be	found	from	dynamic	testing.		Each	of	

the	 dynamic	 tests	 performed	 for	 the	 undamaged	 and	 damaged	 cases	 of	 the	 grid	 model	

resulted	in	a	modal	flexibility	matrix	which	represented	the	flexibility	of	the	structure.		In	

order	to	attain	a	modified	load	rating,	the	strain	in	the	member	due	to	a	load	was	needed.		

Therefore	 a	 correlation	 between	modal	 flexibility	 and	 strain	was	 required,	 and	 this	was	

found	 through	 Euler‐Bernoulli	 beam	 theory.	 	 This	 is	 discussed	 further	 in	 the	 following	

sections.	

7.1.3 Deflection	Profiles	

The	Euler‐Bernoulli	beam	equation	is	shown	as	follows:	
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	(7.1)	

where	

	 y(x)	=	deflection	of	element	with	respect	to	x.	

	 x	=	distance	from	support.	

	 q(x)	=	applied	distributed	load	with	respect	to	x.	
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	 EI	=	flexural	rigidity	properties	of	element.	

This	equation	can	then	be	reduced	and	rearranged	to	the	following:	
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	(7.2)	

where	

	 M(x)	=	the	moment	in	the	beam	at	location	x.	

In	order	to	find	moment,	from	which	one	can	find	strain,	deflection	profiles	were	found	

from	the	modal	 flexibility	matrix.	 	These	deflection	profiles	were	obtained	by	multiplying	

the	flexibility	matrix	by	a	virtual	load	vector,	resulting	in	the	displacement	of	each	node	due	

to	the	virtually	applied	load.	
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where		

	 flexibility	coefficient	fi,j	is	the	displacement	at	i	due	to	a	unit	load	at	j.	

	 Deflections	 u1	 through	 ui,	 represent	 the	 displacements	 of	 DOF1	 through	 DOFi,	

respectively,	due	 to	 the	applied	 load	vector	 [p].	 	 Several	of	 these	deflection	profiles	have	

been	shown	in	the	previous	chapters,	and	it	was	shown	that	the	deflections	produced	from	

the	 flexibility	 matrix	 closely	 approximated	 the	 actual	 deflections,	 with	 the	 differences	

associated	with	modal	truncation.	
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In	 order	 for	 Eq.	 (7.2)	 to	 be	 valid,	 a	 distributed	 load	must	 be	 applied	 to	 the	 beam	as	

denoted	 by	 q(x)	 in	 Eq.	 (7.1).	 	 Since	 the	 representation	 of	 each	 girder	 is	 discretized	 as	

several	nodes,	applying	a	true	distributed	load	is	not	possible.		With	several	closely	spaced	

nodes,	 a	 close	 approximation	 of	 a	 distributed	 load	 is	 possible.	 	 As	 the	 number	 of	 nodes	

decrease,	the	approximation	becomes	less	accurate.		Consequently,	the	load	vector	applied	

to	the	grid	model	was	a	uniform	load	at	every	node	in	the	girder,	to	as	closely	as	possible	

represent	a	distributed	load.		

7.1.4 Predicted	Moments	

A	4th	degree	polynomial	trend	line	was	fit	to	the	displacement	profile	of	the	beam	with	

the	 largest	deflection	due	to	a	given	 load	case.	 	The	beam	with	the	 largest	deflection	was	

selected	 because	 the	 largest	 deflection	would	 indicate	 the	 largest	 internal	moment.	 	 The	

trend	 line,	 y(x),	 provided	 a	 very	 close	 representation	 of	 the	 deflection	 of	 the	 beam.	 	 By	

taking	the	2nd	derivative	of	this	function	with	respect	to	x,	the	quantity	M(x)/EI	was	found	

as	 per	 Eq.	 (7.2).	 	 The	 right	 hand	 side	 of	 this	 equation	 contains	 terms	 for	 both	 bending	

moment	and	flexural	rigidity,	which	is	a	product	of	the	section	and	material	properties	of	

the	beam.	 	 If	damage	were	 to	occur	 to	a	bridge	due	 to	some	hazard	event,	 the	change	 in	

stiffness	would	 not	 be	 known.	 	 Being	 able	 to	 find	 the	moment	with	 the	 flexural	 rigidity	

allowed	 the	 uncertainty	 related	 to	 the	 change	 in	 stiffness	 to	 be	 bypassed	 since	 this	 is	

already	 incorporated	 in	 the	modal	 flexibility	matrix.	 	 The	 bending	moment	 and	 flexural	

rigidity	 terms	 could	 be	 translated	 into	 bending	 strain	 at	 the	 critical	 section,	 a	 key	

component	of	the	modification	factor.		
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7.1.5 Predicted	Strains	

Bending	 strain	 at	 any	 point	 on	 the	 cross	 section	 can	 be	 readily	 obtained	 from	 the	

bending	 moment	 at	 a	 particular	 section	 from	 basic	 mechanics	 of	 materials	 principles.	

Bending	stress,	σ,	is	related	to	moment,	M	through	the	following	expression:		

	
I

cM *
 	

	(7.4)	

where	

	 c	=	perpendicular	distance	to	point	of	interest	from	neutral	axis	of	the	cross	section.	

	 I	=	second	moment	of	area	of	cross	section.	

Using	Hooke’s	Law,	the	relationship	between	bending	stress	and	strain,	ε,	is:	

	 E*  	
	(7.5)	

Combining	Eq.	(7.4)	and	Eq.	(7.5),	the	bending	strain	then	becomes:	

	
IE

cM

E *

*


 	
	(7.6)	

Since	 the	M/EI	 term	was	 found	 earlier	 from	 the	 deflection	 profiles,	 that	 value	 could	

simply	be	multiplied	by	 the	distance	 to	edge	of	girder,	c,	 and	 the	maximum	strain	 found.		

This	strain	was	then	used	to	find	the	adjustment	factor,	K.	
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7.1.6 Adjustment	Factor	K	

The	previous	steps	discussed	were	important	because	they	linked	the	deflection	found	

from	modal	flexibility	to	the	strain	present	in	the	girder	member.		According	to	the	NCHRP	

report	(NCHRP	&	Lichtenstein,	1998),	the	adjustment	factor	K	is	given	by:	

	 baKKK 1 	
	(7.7)	

where	

	 Ka	accounts	for	the	benefit	or	detriment	derived	from	the	load	test.	

	 Kb	accounts	for	the	understanding	of	the	load	test	results	when	compared		 with	

those	predicted	by	theory,	the	type	and	frequency	of	follow‐up		inspections,	 and	 failure	

mode	consideration.	

It	 should	 be	 noted	 that	 there	 is	 risk	 associated	 with	 extrapolating	 diagnostic	 test	

results	to	levels	higher	than	actually	applied	to	the	structure.		Validation	of	these	methods	

must	be	undertaken	in	order	to	prove	the	effectiveness	of	generating	the	adjustment	factor	

K	from	dynamic	test	data.	

Ka	was	 the	component	of	Eq.	 (7.7)	 that	was	generated	 from	the	dynamic	 test	results,	

with	Ka	defined	as	follows:	

	 1
T

c
aK




	
	(7.8)	

where	

	 εT	=	maximum	strain	during	load	test.	
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	 εc	 =	 corresponding	 theoretical	 strain	 due	 to	 the	 loading	 applied	 and	 its	

	 position,	in	order	to	obtain	εT.	

In	 the	 laboratory	 setup	 the	 strain,	 εT,	 due	 to	 an	 implemented	 damage	 scenario	 was	

found	 from	 Eq.	 (7.6),	while	 the	 strain,	 εc,	 was	 found	 from	 the	 undamaged	 case	with	 the	

same	 loading	 scenario.	 	 In	 a	 real	 world	 application	 to	 a	 bridge,	 the	 strain,	 εT,	 would	 be	

found	from	testing	after	a	hazard	has	occurred,	and	the	strain,	εc,	would	be	found	from	the	

analytical	model	on	file	with	the	same	loading	scenario.			

The	Kb	 factor	 is	a	multiplicative	combination	of	 three	 factors	 tabulated	in	the	NCHRP	

report,	but	not	reproduced	here.		Assuming	that	the	deflections	would	increase	in	the	linear	

elastic	range	and	that	the	load	applied	could	be	extrapolated	to	a	larger	value,	it	was	chosen	

that	Kb1	=	0.8.		Assuming	that	a	follow‐up,	in	depth	inspection	would	occur	within	one	year,	

Kb2	=	1.0.		Finally,	assuming	fatigue	would	not	control,	and	that	redundancy	may	have	been	

lost	due	to	the	hazard,	Kb3	=	0.9.		These	values	would	need	to	be	chosen	for	each	structure	

and	each	type	of	hazard	event	individually,	but	were	chosen	as	noted	here	for	illustrative	

purposes	only.		Multiplying	the	various	values	together	gives	Kb	=	0.72.	

7.1.7 Modified	Load	Rating	

If	no	 test	were	performed,	K	=	1,	but	generally	after	a	 load	test	K	≠	1.	 	 If	K	>	1,	 then	

some	benefit	would	be	 realized	 from	 the	 load	 test,	 proving	 that	 the	 structure	 could	hold	

more	than	originally	rated	for	as	is	often	the	case	for	diagnostic	static	load	tests.		If	K	<	1,	

then	actual	response	of	the	bridge	would	be	worse	than	originally	rated	for,	and	may	be	the	

case	for	an	unknown	damage	event.			
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The	modified	load	rating	is	therefore:	

	 KRFRF cT * 	
	(7.9)	

where	

	 RFT	=	the	modified	load	rating	based	on	the	diagnostic	test.	

	 RFc	=	the	analytical	load	rating	based	on	prior	calculations.	

The	analytical	 load	rating	is	assumed	to	be	on	record	for	the	bridge	of	concern.	 	This	

load	 rating,	multiplied	 by	 the	modification	 factor	K,	would	produce	 a	 new	modified	 load	

rating	that	emergency	response	and	recovery	personnel	could	use	to	determine	whether	a	

bridge	was	safe	to	use	or	not.			

7.2 ADJUSTMENT	FACTOR	FOR	ANALYTICAL	DAMAGE	CASES	

In	 order	 to	 validate	 the	 previously	 described	 processes,	 a	 numerical	 example	 was	

explored.		A	uniformly	distributed	load	of	0.1	k/ft	was	applied	to	a	W8x10	beam	that	was	

25	ft	 long.	 	The	deflections	and	moments	at	seven	locations	due	to	the	applied	 load	were	

found	 from	 the	 closed	 form	 deflection	 equations	 available	 in	 the	 AISC	 Manual	 of	 Steel	

Construction	(AISC,	2005).		A	4th	degree	polynomial	trend	line	was	fit	to	the	deflection	data,	

and	the	second	derivative	of	the	polynomial	was	taken	in	order	to	represent	the	moments.		

These	 were	 compared	 to	 the	 closed	 form	 solution	 for	 the	moments,	 and	were	 found	 to	

match	them	exactly.		The	same	analysis	was	performed	a	second	time,	with	the	load	being	

changed	to	a	1	kip	point	load	in	the	center	of	the	beam.		The	actual	moment	variation	due	to	

this	 type	 of	 loading	 linearly	 increases	 to	 the	 maximum,	 at	 the	 midpoint,	 then	 linearly	
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decreases	 to	 zero	 at	 the	 support.	 	 It	 was	 found	 that	 the	 moment	 found	 from	 the	

displacement	curve	contained	negative	moment	at	the	supports,	while	the	moment	at	mid‐

span	was	around	15%	off.		This	can	be	seen	in	Figure	7.2.		It	was	shown	that	as	the	number	

of	 nodes	 in	 the	 beam	 decreased,	 the	 load	 applied	 became	 less	 like	 an	 actual	 distributed	

load,	and	therefore	the	moment	calculated	from	the	deflection	curve	decreased	in	accuracy.				

The	 process	was	 further	 validated	 by	 evaluating	 the	 SAP2000	model	 of	 the	 grid.	 	 A	

uniformly	distributed	load	was	placed	on	the	structure	in	the	form	of	equal	 loads	at	each	

node,	 and	 static	 analysis	was	 performed.	 	 Both	 displacements	 and	moments	were	 found	

from	 the	 static	 analysis.	 	 The	 displacements	were	 plotted	 for	 only	 the	 nodes	where	 the	

longitudinal	 beams	 intersected	 the	 transverse	 beams,	 since	 these	were	 the	 nodes	where	

accelerometers	 were	 placed	 on	 the	 experimental	 model.	 	 A	 trend	 line	 was	 fit	 to	 the	

displacements,	 and	 the	moments	were	 found	 as	 described	 earlier.	 	 These	 displacements	

were	then	compared	with	the	moments	found	from	the	static	analysis	in	SAP2000,	as	can	

be	seen	in	Figure	7.3.		The	differences	in	moments	were	found	to	be	around	11%,	with	the	

error	associated	with	 the	 fact	 that	 the	distributed	 load	was	 idealized	as	a	 series	of	point	

loads.		

	



193	

	

	
Figure	7.2:	Moment	Comparison	for	Simple	Beam	with	Point	Load	
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Figure	7.3:	Moment	Comparisons	of	Undamaged	Analytical	Model	
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load	at	the	same	location.		These	values	are	summarized	for	this	case	and	the	other	cases	in	

Table	7.1.		From	these	values,	the	modification	factor	K	was	found	to	be	0.986.		This	value	

would	 indicate	 a	1.4%	 loss	 of	 stiffness	 to	be	 applied	 to	 the	posted/recorded	 load	 rating,	

showing	a	very	insignificant	change.		The	contributing	stiffness	of	the	nearby	members	was	

able	 to	 adequately	 support	 the	unsupported	 corner	of	 the	 structure.	 	 Since	 the	 structure	

was	 made	 of	 relatively	 stiff	 members	 with	 short	 distances	 between	 nodes,	 this	 seems	

reasonable.		

	

	

	
Figure	7.4:	M/EI	for	Analytical	Damage	Case	#1	
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7.2.2 Damage	Case	#2	

Damage	 Case	 #2	 (the	 removal	 of	 transverse	 beam	D)	 did	 not	 noticeably	 change	 the	

deflection	profile	of	the	grid	model,	as	shown	by	Figure	6.31.		The	deflection	of	each	node	

due	 to	 a	 uniform	 load	 placed	 on	 an	 edge	 girder	 was	 found.	 	 The	 girder	 with	 the	 load	

deflected	the	most,	with	the	middle	girder	deflecting	much	less,	and	the	far	girder	arching	

upwards	from	the	load.		From	the	trend	line	of	the	deflection,	the	M/EI	term	was	found	as	a	

function	of	x,	and	is	shown	in	Figure	7.6.	 	Following	the	previously	described	procedures,	

the	modification	 factor	K	was	 found	to	be	0.980	(Table	7.1).	 	This	value	would	 indicate	a	

2%	 loss	 of	 stiffness	 to	 be	 applied	 to	 the	 posted/recorded	 load	 rating,	 and	 is	 not	 a	 very	

significant	change	which	is	understandable	given	the	small	damage	that	was	implemented.			

	

	

	
Figure	7.5:	M/EI	for	Analytical	Damage	Case	#2	 	
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7.2.3 Damage	Case	#3	

Unlike	the	two	previously	described	damage	scenarios,	Damage	Case	#3	(the	removal	

of	several	gusset	plates)	affected	the	flexibility	very	noticeably.		As	seen	in	Figure	6.31,	the	

damaged	 deflection	 profile	 deflects	 much	 more	 than	 the	 undamaged	 case,	 as	 would	 be	

expected	with	 such	 a	 loss	 of	 stiffness.	 	 The	modification	 factor	K	was	 found	 to	 be	 0.915	

(Table	 7.1).	 	 This	 value	 would	 indicate	 a	 9.5	 %	 loss	 of	 stiffness	 to	 be	 applied	 to	 the	

posted/recorded	 load	 rating.	 	 This	 is	 a	much	 larger	 loss	 of	 stiffness	 than	 the	 other	 two	

damage	scenarios.		This	reduction	in	stiffness	is	acceptable	given	the	reduction	in	stiffness	

from	the	damage	inflicted	and	the	resulting	larger	deflections	seen	in	the	girders.	

	

	

	
Figure	7.6:	M/EI	for	Analytical	Damage	Case	#3	
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7.3 ADJUSTMENT	FACTOR	FOR	EXPERIMENTAL	DAMAGE	CASES	

The	process	described	in	the	previous	sections	for	obtaining	a	load	rating	adjustment	

factor,	K,	was	also	applied	to	the	experimentally	obtained	data.	 	Given	that	impact	testing	

proved	overall	to	be	less	reliable	than	shaker	testing,	only	the	shaker	testing	results	were	

used	to	find	the	load	rating	adjustment	factor.	

7.3.1 Damage	Case	#1	

Referring	back	to	Figure	6.33,	it	can	be	seen	that	the	damage	induced	by	Damage	Case	

#1	did	not	 closely	 reflect	 the	damage	simulated	by	 the	analytical	model	 shown	 in	Figure	

6.31.		That	being	the	case,	the	analysis	still	was	performed	on	the	shaker	test	data	since	the	

impact	test	data	was	not	representative	of	the	damage	either.	

Three	different	loading	scenarios	were	virtually	applied	to	the	modal	flexibility	matrix,	

with	each	scenario	consisting	of	a	distributed	 load	applied	 to	one	girder	only.	 	The	 loads	

applied	to	the	edge	girders	caused	significantly	more	deflection	than	the	load	applied	to	the	

center	 girder.	 	 This	 is	 understandable	 since	 the	 load	 applied	 to	 the	 center	 girder	 is	 also	

distributed	 to	 the	 two	 edge	 girders	 through	 the	 stiff	 transverse	 beams.	 	 The	 controlling	

case	was	found	to	be	a	distributed	load	applied	to	girder	#3,	which	is	also	understandable	

given	that	the	support	was	removed	from	that	girder.	 	M/EI	was	found	as	a	function	of	x,	

and	is	shown	in	Figure	7.7.			

The	maximum	 value	 (2.0818E‐5	 in‐1)	was	 found	 to	 occur	 at	 a	 distance	 of	 147.99	 in.	

from	the	support	location	as	shown	in	Figure	7.7.		Using	the	c	value	of	3.945	in.,	the	strain	

εT	was	found	to	be	94.444	microstrain.		The	strain	calculated	from	the	undamaged	model,	
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εc,	was	 found	 to	be	93.668	microstrain	 from	 the	 same	applied	 load	at	 the	 same	 location.		

These	values	are	tabulated	in	Table	7.2.		From	these	values,	the	modification	factor	K	was	

found	to	be	0.994.		This	value	would	indicate	a	very	small	loss	of	stiffness	due	to	the	loss	of	

support.	 	This	modification	factor	was	very	similar	to	the	factor	found	from	the	analytical	

model.			

	

	

	

	
Figure	7.7:	M/EI	for	Experimental	Damage	Case	#1	
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7.3.2 Damage	Case	#2	

Referring	back	to	Figure	6.33,	it	can	be	seen	that	the	damage	induced	by	Damage	Case	

#2	 did	 not	 significantly	 affect	 the	 deflection	 profile.	 	 These	 results	 were	 similar	 to	 the	

results	represented	by	the	analytical	model.			

From	 the	 three	 different	 loading	 scenarios	 applied,	 the	 controlling	 case	 was	 again	

found	to	be	a	distributed	load	applied	to	girder	#3.		The	M/EI	term	was	found	as	a	function	

of	x,	and	is	shown	in	Figure	7.8.		The	maximum	value	was	located	at	a	distance	of	153.5	in.	

from	the	support,	which	was	different	 from	the	previous	case	and	shifted	right	of	center.		

The	exact	mid‐span	of	the	girder	was	located	at	144	in.,	and	the	difference	was	associated	

with	unique	characteristics	of	 the	constructed	system.	 	When	the	damage	scenarios	were	

implemented	 on	 the	 SAP2000	 model	 (section	 7.2),	 the	 point	 of	 maximum	moment	 was	

found	 to	 exactly	 at	 144	 in.	 	 The	 SAP2000	 model	 assumes	 that	 the	 system	 as	 perfectly	

symmetric	and	that	all	of	the	connections	have	the	same	properties.	 	 In	the	actual	model,	

the	 connections	may	 have	 differences	 in	 bolt	 tightening	 patterns,	 differences	 in	 support	

height,	 and	slight	differences	 in	material	properties.	 	All	of	 these	unique	 factors	played	a	

role,	and	the	non‐symmetric	nature	of	the	structure	became	evident	through	the	dynamic	

testing.			

Using	the	maximum	value	found	from	Figure	7.8,	the	modification	factor	K	was	found	

to	 be	 0.917.	 	 This	 value	 indicated	 an	 8.3%	 loss	 of	 stiffness	 to	 be	 applied	 to	 the	

posted/recorded	 load	 rating,	 showing	 that	 the	 actual	 model	 was	 affected	 more	 by	 the	

damage	 than	 the	analytical	model.	 	As	 a	 comparison,	when	 the	 confidence	 factor,	ϕ,	was	
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changed	to	be	1.0,	the	overall	modification	factor	K	was	found	to	be	1.012.		This	shows	that	

the	 structure	would	be	 relatively	unchanged	due	 to	 the	damage.	 	Given	 the	errors	 found	

from	idealizing	the	distributed	load	as	a	series	of	point	 loads,	 it	 is	recommended	that	the	

confidence	factor	remain	ϕ	=	1.15.	

	

	

	

	
Figure	7.8:	M/EI	for	Experimental	Damage	Case	#2	
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7.3.3 Damage	Case	#3	

The	damage	induced	by	Damage	Case	#3	significantly	affected	the	deflection	profile	by	

making	the	structure	more	flexible	(Figure	6.33).		These	results	were	similar	to	the	results	

represented	 by	 the	 analytical	 model.	 	 When	 the	 three	 different	 loading	 scenarios	 were	

virtually	 applied	 to	 the	 modal	 flexibility	 matrix	 the	 controlling	 case	 was	 found	 to	 be	 a	

distributed	load	applied	to	girder	#1,	with	M/EI	shown	in	Figure	7.9.			

The	 maximum	 value	 was	 located	 at	 a	 distance	 of	 153.89	 in.,	 which	 was	 similar	 in	

location	 to	Damage	Case	#2.	 From	 the	 values	 summarized	 in	Table	 7.2,	 the	modification	

factor	K	was	 found	to	be	0.820.	 	This	value	would	 indicate	an	18%	 loss	of	stiffness	 to	be	

applied	to	the	posted/recorded	load	rating,	reflecting	the	substantial	loss	due	to	the	gusset	

plate	removal.	

	

	
Figure	7.9:	M/EI	for	Experimental	Damage	Case	#3	
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7.4 SUMMARY		

The	modification	 factor,	K,	was	developed	 for	use	 from	dynamic	 testing	data,	namely	

the	 modal	 flexibility	 matrix.	 	 This	 modification	 factor	 was	 a	 factor	 to	 be	 applied	 to	 an	

existing	load	rating	to	reduce	the	posted	capacity	of	a	bridge	following	a	hazard	event.	

In	both	the	analytical	and	experimental	models,	the	method	for	acquiring	K	was	shown.		

In	order	to	obtain	the	strains	needed	for	obtaining	the	modification	factor,	the	moment	was	

found	from	the	deflection	profiles.	 	A	uniform	distributed	load	was	used	in	each	case,	and	

was	applied	to	each	girder	independently.		The	controlling	case	was	always	an	edge	girder,	

but	 changed	 between	 the	 two	 edge	 girders	 depending	 on	 the	 case.	 	 The	 center	 girder	

dispersed	more	of	its	load	to	the	edge	girders,	causing	significantly	less	deflection.	 	When	

the	moment	was	predicted,	some	error	was	found	especially	near	the	boundaries.	 	At	the	

supports,	where	the	moment	should	be	zero,	the	moment	turned	out	to	be	a	negative	value.		

This	 was	 due	 to	 trend	 line	 fitting,	 as	 well	 as	 idealizing	 the	 uniformly	 distributed	 load	

assumed	by	the	differential	equation	relating	deflection	to	bending	moment	as	a	series	of	

point	 loads	 at	 the	 nodes	 of	 the	 structure.	 	 A	 summary	 of	 the	 results	 from	 the	 analytical	

study	is	shown	in	Table	7.1.		A	summary	of	the	results	from	the	experimental	data	obtained	

from	shaker	tests	on	the	grid	model	is	shown	in	Table	7.2.			
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Table	7.1:	Summary	of	Analytical	Load	Rating	Modification	Factor	Values	

Description	

Damage	

Case	1	

Damage	

Case	2	

Damage	

Case	3	

M/EI		
Moment	/	Flexural	

Rigidity	 2.8503E‐05 2.8751E‐05 3.1703E‐05	

xmax		
Max	Moment	
Location	 141.59	 144.00	 144.00	

ф		 Confidence	Factor	 1.15	 1.15	 1.15	
c		 Dist.	to	extreme	fiber	 3.945	 3.945	 3.945	
εT		 Measured	Strain	 1.2931E‐04 1.3044E‐04 1.4383E‐04	
εc		 Analytical	Strain	 1.2681E‐04 1.2681E‐04 1.2681E‐04	
Ka		 εc/εT	‐1	 ‐0.019	 ‐0.028	 ‐0.118	
Kb		 System	Specific	 0.72	 0.72	 0.72	
K		 Modification	Factor	 0.986	 0.980	 0.915	

	

	

Table	7.2:	Summary	of	Experimental	Load	Rating	Modification	Factor	Values	

Description	

Damage	

Case	1	

Damage	

Case	2	

Damage	

Case	3	

M/EI		 Moment	/	Flexural	
Rigidity	 2.0818E‐05 2.3375E‐05 2.7351E‐05	

xmax		
Max	Moment	
Location	 147.99	 153.50	 153.89	

ф		 Confidence	Factor	 1.15	 1.15	 1.15	
c		 Dist.	to	extreme	fiber	 3.945	 3.945	 3.945	
εT		 Measured	Strain	 9.4444E‐05 1.0605E‐04 1.2408E‐04	
εc		 Analytical	Strain	 9.3668E‐05 9.3757E‐05 9.3078E‐05	
Ka		 εc/εT	‐1	 ‐0.008	 ‐0.116	 ‐0.250	
Kb		 System	Specific	 0.72	 0.72	 0.72	

K		 Modification	Factor	 0.994	 0.917	 0.820	
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The	trend	between	the	three	damage	cases	is	clear	in	both	of	the	tables.		Damage	Case	

#1	 had	 the	 least	 change,	 while	 Damage	 Case	 #3	 had	 the	 greatest	 change.	 	 In	 the	

experimental	case,	the	change	between	the	first	two	damage	cases	was	very	small,	while	in	

the	 experimental	 case	 it	was	much	 larger.	 	 The	 same	was	 true	when	 looking	 at	 Damage	

Case	#3.	 	Overall,	 the	experimental	 cases	 showed	more	 change	 than	 the	analytical	 cases,	

and	is	attributed	to	the	as‐constructed	attributes	of	the	grid	model.	

The	 exact	 mid‐span	 of	 the	 girder	 was	 located	 at	 144	 in.	 from	 the	 supports.	 	 When	

damage	scenarios	two	and	three	were	implemented	with	the	SAP2000	model,	the	point	of	

maximum	 moment	 was	 found	 to	 be	 exactly	 at	 144	 in.,	 which	 is	 the	 location	 for	 the	

undamaged	scenario.		On	the	other	hand,	Damage	Case	#1,	produced	a	maximum	moment	

slightly	to	the	left	of	center	(141.59	in).	 	The	experimental	model	showed	a	similar	trend,	

with	the	point	of	maximum	moment	shifting	left	for	damage	scenario	one	compared	to	the	

other	 cases.	 	 Interestingly,	 the	 point	 of	 maximum	 moment	 for	 the	 second,	 third,	 and	

undamaged	cases	was	found	to	be	around	153	in.	 	The	differences	were	attributed	to	the	

unique	characteristics	of	the	constructed	system.		The	analytical	model	was	constructed	in	

SAP2000	assuming	that	the	system	was	perfectly	symmetric	and	that	all	connections	and	

supports	were	 exactly	 the	 same,	 thereby	 producing	 a	midpoint	 of	 144	 in.	 	 In	 the	 actual	

model,	the	connections	have	differences	in	bolt	tightening	patterns,	differences	in	support	

height,	and	slight	differences	in	material	properties.		All	of	these	unique	factors	play	a	role	

and	shifted	the	point	of	maximum	moment	slightly	off	center.	
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8. EXPERIMENTAL	SENSOR	OPTIMIZATION	STUDY	

The	final	area	of	research	was	on	the	topic	of	optimization.		Ideally,	a	large	number	of	

sensors	would	be	used	on	a	given	structure	to	most	closely	identify	all	of	the	contributing	

modes	and	accurately	depict	 the	associated	mode	 shapes.	 	Using	more	 sensors	 increases	

the	 spatial	 resolution	 of	 any	 identified	 modes,	 and	 also	 provides	 redundancy	 to	 the	

instrumentation	 setup.	 	 If	 a	 sensor	 is	 later	 found	 to	 have	 malfunctioned,	 it	 could	 be	

disregarded	and	one	could	rely	on	the	remaining	sensors.	 	 In	reality	though,	sensors	cost	

money,	 and	each	additional	 channel	 in	a	given	Data	Acquisition	Unit	will	 add	cost	 to	 the	

system.		This	research	compared	the	effects	of	different	sensor	setups	on	the	identification	

results	in	an	attempt	to	find	the	most	critical	sensors	for	each	setup.			

Initially,	 the	 analytical	model	 of	 the	 grid	was	used	 as	 a	 tool	 for	 optimizing	 the	 input	

locations	for	testing	of	the	grid	(see	Section	5.5).		Results	based	on	pure	analytical	guidance	

proved	to	not	be	the	most	accurate,	and	a	more	accurate	relationship	was	found	through	

experimental	methods.	 	 From	 these	 tests,	 the	number	of	 inputs	was	 reduced	 from	every	

location	to	just	five	locations,	with	very	little	loss	of	accuracy	in	modal	flexibility.			

In	the	same	manner,	a	systematic	removal	of	response	sensors	from	the	testing	setup	

was	 performed.	 	 The	 actual	 sensors	 were	 not	 removed	 from	 the	 structure.	 Instead,	 the	

response	 readings	were	 removed	 from	 the	 full	 test	data	 sets	 in	 the	 form	of	 removing	an	

entire	column	from	the	FRF	matrix.	 	This	way,	the	exact	same	test	data	was	used	and	the	

uncertainty	associated	with	taking	new	data	was	eliminated.		The	modal	flexibility	was	re‐

calculated	 and	 compared	with	 the	 results	 containing	 the	 full	 set	 of	 sensors.	 The	 results	
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from	these	tests	help	to	show	where	sensors	are	of	the	most	use	in	a	testing	setup	used	to	

characterize	a	bridge.		Since	more	sensors	translate	to	higher	costs	in	hardware,	software,	

and	setup	time,	these	results	will	be	extremely	useful	for	bridge	testers.			

The	response	measurements	were	recorded	for	all	21	nodes	of	the	grid	during	shaker	

testing.		The	only	input	locations	used	were	a	reduced	set	of	five	locations	as	explained	in	

Section	5.5.		Each	removal	scheme	was	implemented	for	all	three	of	the	damage	scenarios.		

A	 summary	of	 the	different	 removal	 schemes	 is	 shown	 in	Figure	8.1,	 and	 the	 results	 are	

further	described	in	the	following	sections.	

	
Figure	8.1:	Sensor	Removal	Schemes	
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8.1 DAMAGE	CASE	#1	

The	first	removal	of	sensor	columns	in	the	FRF	matrix	was	implemented	by	removing	

the	 sensors	 at	 locations	 A2	 and	 G2.	 	 As	 seen	 previously,	 the	 support	 sensors	 were	

important	 for	 capturing	 a	 loss	 of	 bearing	 type	 damage.	 	 It	 follows	 that	 having	 only	 the	

outside	 corners	 would	 be	 enough	 to	 capture	 a	 loss	 of	 support	 if	 the	 abutment	 were	 to	

experience	 scour	 or	 differential	 settlement.	 	 It	 was	 observed	 that	 no	 significant	 change	

occurred	with	the	removal	of	these	two	sensors.			

The	 sensors	 on	 transverse	 girders	 B	 and	 F	 were	 then	 removed	 in	 addition	 to	 the	

sensors	at	A2	and	G2.		This	resulted	in	a	slight	loss	of	accuracy	compared	with	the	previous	

schemes.	

Scheme	#3	removed	the	sensors	 located	on	transverse	girders	C	and	E	 in	addition	to	

the	previous	removals,	leaving	only	the	sensors	in	the	very	middle	of	the	grid	in	place.		The	

CMIF	plot	from	the	full	array	of	sensors	is	reproduced	as	Figure	8.2	for	convenience.		When	

compared	to	Figure	8.3,	which	is	the	CMIF	plot	for	the	removal	of	sensors	for	Scheme	#3,	it	

can	be	seen	that	some	of	the	modes/peaks	were	affected	by	the	reduced	sensor	layout.		The	

overall	amplitudes	of	 the	peaks	were	also	reduced.	 	This	 resulted	 in	 the	modal	 flexibility	

being	significantly	changed,	as	noted	by	the	deflection	profiles	in	Figure	8.4.		

The	reduction	of	sensors	in	Scheme	#4	matched	the	reduced	input	location	setup	used	

for	the	shaker	testing.		The	problem	resulting	from	this	setup	was	a	skewing	of	the	results	

in	the	flexibility	matrix	towards	one	side.	
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Scheme	 #5	 produced	 nearly	 the	 same	 results	 as	 Scheme	 #2,	 but	 did	 so	 with	 two	

additional	sensors	removed	from	the	setup.	 	This	would	translate	to	additional	monetary	

savings	while	still	achieving	the	same	results.			

A	 summary	 of	 the	 deflection	 profiles	 from	 each	 of	 the	 sensor	 removal	 schemes	 is	

shown	in	Figure	8.4.		It	can	be	seen	that	Scheme	#3	produced	very	poor	results.		It	can	also	

be	seen	that	Scheme	#4	skewed	the	data	to	the	right,	while	the	other	schemes	retained	high	

levels	of	accuracy.			

	

	
Figure	8.2:	CMIF	Plot	‐	All	sensors	for	Damage	Case	#1	
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Figure	8.3:	CMIF	Plot	–	Scheme	#3	for	Damage	Case	#1	
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Figure	8.4:	Deflection	Profile	for	Damage	Case	#1	
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when	compared	with	 the	all	 sensor	plot,	 show	a	reduction	of	 the	mode	at	around	88	Hz.		

This	 mode	 would	 likely	 not	 have	 been	 found	 without	 prior	 knowledge	 of	 the	 location.		

Scheme	 #5	 showed	 to	 be	 identical	 to	 Scheme	 #2	 both	 producing	 reliable	 results.	 	 A	

summary	of	the	deflection	profiles	is	shown	in	Figure	8.8.	

	

	
Figure	8.5:	CMIF	Plot	‐	All	sensors	for	Damage	Case	#2	
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Figure	8.6:	CMIF	Plot	–	Scheme	#3	for	Damage	Case	#2	

	

	
Figure	8.7:	CMIF	Plot	–	Scheme	#4	for	Damage	Case	#2	
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Figure	8.8:	Deflection	Profiles	for	Damage	Case	#2	
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Figure	8.9:	Deflection	Profiles	for	Damage	Case	#3	

	

	

8.4 SUMMARY	

For	each	of	 the	 three	damage	 scenarios,	 five	different	 sensor	 removal	 schemes	were	

implemented	on	the	experimental	data	sets	in	the	form	of	removing	columns	from	the	FRF	

matrices.	 	The	resulting	data	sets	were	processed	 into	modal	 flexibility	matrices,	and	the	

deflection	 profiles	 were	 created.	 	 It	 was	 found	 that	 Scheme	 #5	 provided	 the	 optimal	

balance	between	the	number	of	sensors	and	the	accuracy	of	output.	

‐0.25

‐0.20

‐0.15

‐0.10

‐0.05

0.00

0.05

0 50 100 150 200 250 300

D
e
fl
e
ct
io
n
 [
in
.]

Distance from Support [in.]

Full

Scheme 1

Scheme 2

Scheme 3

Scheme 4

Scheme 5



216	

	

When	 implementing	 high	 reduction	 of	 response	 sensors,	 some	 of	 the	 contributing	

modes	 of	 the	 response	were	 lost.	 	 This	 loss	 resulted	 in	 a	modal	 flexibility	 that	was	 less	

accurate	than	one	produced	from	a	setup	containing	a	high	spatial	resolution	of	sensors.		It	

was	also	observed	that	when	a	high	number	of	sensors	were	removed,	some	of	the	mode	

shapes	became	more	difficult	to	distinguish.		A	large	number	of	sensors	on	the	structure	led	

to	a	high	spatial	resolution,	which	facilitated	easy	verification	of	contributing	modes.		Also,	

with	 some	 of	 the	 removal	 schemes	 (#4	 and	 #5),	 interpolation	 began	 to	 be	 necessary	 in	

order	to	connect	the	nodes	to	one	another.	 	This	further	reduced	the	clarity	of	the	higher	

modes	of	the	structure.		These	concepts	are	illustrated	in	Figure	8.10.		When	looking	at	the	

figure,	the	top	two	illustrations	represent	two	mode	shapes	with	all	21	response	sensors.		

When	Scheme	#2	was	implemented,	the	sensors	closest	to	the	supports	were	removed.		As	

seen	 in	 the	 figure,	 the	 motion	 of	 the	 removed	 nodes	 must	 be	 assumed.	 	 When	 further	

reduced	 (#4	 and	 #5),	 more	 interpolation	 became	 necessary	 and	 the	 shapes	 began	 to	

resemble	other	shapes.		This	is	further	amplified	in	the	bottom	of	the	figure,	where	the	two	

shapes	 look	nearly	 identical	 to	1st	Bending	Mode	 and	1st	 Torsion	Mode.	 	As	 can	be	 seen,	

great	care	must	be	taken	when	interpolating	results	from	a	reduced	sensor	scheme.	

It	was	also	found	that	to	obtain	a	reduced	setup,	reducing	the	input	force	locations	to	

the	central	region	of	the	structure	produced	the	best	results	(Chapter	5).		When	the	shaker	

device	was	placed	near	the	supports,	it	is	hypothesized	that	a	portion	of	the	applied	force	

transferred	 to	 the	 supports	 from	 the	 supporting	 slab,	 producing	 erroneous	 results.	 	 In	 a	

similar	manner,	reducing	the	response	sensors	to	the	central	region	of	the	structure	led	the	

best	results	in	a	reduced	sensor	layout.		This	was	attributed	to	the	high	signal	to	noise	ratio	
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found	near	the	supports.		Due	to	these	factors	and	the	results	previously	presented,	Scheme	

#5	 was	 found	 to	 be	 the	 most	 economical	 placement	 of	 response	 sensors.	 	 Very	 similar	

results	were	obtained	 from	 this	 sensor	 setup	 compared	 to	 the	 full	 setup,	with	 very	 little	

loss	in	accuracy	when	comparing	the	deflection	profiles.			

Some	 general	 guidelines	 can	 be	 extracted	 from	 the	 above	 results	 for	 applying	 this	

approach	to	actual	in‐service	bridge	structures.	These	guidelines	would	be	applicable	to	the	

general	 class	 of	 simply	 supported	 bridge	 structures	 whose	 dynamic	 behaviors	 are	

dominated	by	vertical	bending	responses.	The	general	 instrumentation	scheme	shown	 in	

Figure	 8.11	 is	 recommended	 for	 dynamic	 testing	 of	 such	 bridges.	 The	 instrumentation	

scheme	 for	 such	 bridges	 should	 include	 at	 least	 three	 accelerometers	 at	 the	 midspan	

location.	The	accelerometers	should	be	spatially	located	at	the	outermost	edges	of	the	cross	

section	 cut	 through	 midspan,	 and	 at	 the	 centerline	 of	 the	 transverse	 cross	 section.	 The	

midspan	 location	 is	 critical	 for	 capturing	 the	 modes	 that	 contribute	 the	 most	 to	 the	

structure’s	dynamic	response.	The	spatial	distribution	at	the	midspan	section	is	necessary	

to	distinguish	between	vertical,	torsional,	and	butterfly	modes.	Accelerometers	should	also	

be	located	at	1/3	span	length	points	on	the	extreme	edges	of	the	transverse	cross	section	to	

provide	additional	 spatial	 resolution	 to	 the	critical	modal	vectors.	Accelerometers	should	

also	 be	 placed	 at	 the	 support	 locations	 if	 the	 goal	 is	 to	monitor	 changes	 in	 the	 support	

conditions.	Excitation	locations	should	include	each	of	the	midspan	accelerometer	locations	

described	above	and	at	the	diagonally	opposed	edge	accelerometers	in	order	to	adequately	

excite	the	bending,	torsion	and	butterfly	modes	that	contribute	to	the	modal	flexibility.		
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Figure	8.10:	Spatial	Resolution	Example	
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Figure	8.11:	Normalized	Sensor	Layout	
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9. CONCLUSIONS	

This	research	thesis	had	four	primary	objectives:	

1. To	develop	an	optimum	bridge	health	monitoring	strategy.	

2. To	explore	the	pros	and	cons	of	different	dynamic	testing	strategies.	

3. To	experimentally	optimize	a	sensor	setup.	

4. To	develop	a	modified	load	rating	from	dynamic	characterization.	

The	 research	 was	 completed	 exclusively	 in	 the	 laboratory;	 however,	 this	 was	

considered	 a	 necessary	 starting	 point	 for	 the	 research	 to	 be	 subsequently	 applied	 to	 in‐

service	 bridge	 structures.	 A	 cantilever	 beam	 model	 was	 used	 as	 a	 simple	 model	 in	 the	

laboratory	 in	 order	 to	 verify	 the	 dynamic	 testing	 strategies	 and	 characterization	

procedures.	 After	 testing	 on	 the	 cantilever	 beam	 was	 completed,	 a	 larger	 steel	 grid	

structure	 was	 fully	 tested	 and	 characterized	 in	 its	 undamaged	 state	 as	 well	 as	 in	 three	

different	induced	damaged	states.		

In	 order	 to	 fulfill	 the	 first	 objective	of	 research,	 the	other	 three	objectives	had	 to	be	

met.		The	results	and	conclusions	from	those	three	objectives	are	presented	first,	followed	

by	conclusions	from	the	first	objective.	
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9.1 DYNAMIC	TESTING	STRATEGIES	

The	grid	model	was	tested	using	a	variety	of	dynamic	and	static	testing	strategies.		The	

static	load	testing	proved	to	be	reliable,	but	static	testing	of	an	in‐service	structure	can	be	

difficult	 to	 accomplish.	 	 Obtaining	 measurements	 from	 strain	 devices	 on	 the	 structure	

proved	 to	 be	 inaccurate,	 but	 since	 several	 other	 researchers	 have	 obtained	 good	 results	

from	strain	measurements,	the	errors	were	attributed	to	either	improper	installation	of	the	

strain	gages	or	inconsistencies	arising	from	the	cabling	and	data	acquisition	setup	and	the	

small	level	of	loading	used	relative	to	the	structure’s	stiffness.			

All	 three	 of	 the	 dynamic	 testing	 strategies	 (impact,	 shaker,	 and	 ambient	 testing)	

provided	very	similar	natural	 frequencies	and	mode	shapes.	 	Mode	shapes	 from	ambient	

testing	were	harder	to	locate	than	mode	shapes	from	the	forced	input	methods	due	to	the	

amount	of	extraneous	noise	present.	 	In	all	three	cases,	when	damage	was	induced	to	the	

structure,	 the	 damage	 could	 be	 detected	 by	 a	 change	 in	 natural	 frequencies	 and	 mode	

shapes.	 	 In	some	scenarios	the	shifts	 in	natural	 frequencies	were	not	very	 large,	whereas	

the	 changes	 in	 mode	 shapes	 were	 very	 noticeable	 in	 each	 damage	 scenario.	 	 In	 some	

damage	cases,	new	mode	shapes	were	detected	from	the	damage	induced.	

One	 key	 characteristic	 that	 was	 extracted	 from	 the	 dynamic	 testing	 was	 the	 modal	

flexibility	matrix.		A	properly	scaled	modal	flexibility	matrix	can	only	be	found	directly	from	

the	 dynamic	 testing	 results	 in	 which	 input	 force	was	measured,	 namely	 the	 impact	 and	

shaker	testing.		The	modal	flexibilities	from	these	two	testing	strategies	for	the	undamaged	

model	were	found	to	be	very	close	to	one	another,	and	were	between	14	‐	19%	from	the	
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analytical	model.		This	difference	was	attributed	to	modal	truncation.		An	un‐scaled,	pseudo	

modal	flexibility	was	extracted	from	the	ambient	testing,	but	proved	to	be	very	unreliable.		

Correlation	 functions	 that	 transformed	 the	 random	 ambient	 vibration	 data	 into	 pseudo	

impulse	response	functions	were	used	in	conjunction	with	the	CMIF	algorithm	to	obtain	the	

pseudo	modal	flexibility	matrix.					

In	order	to	evaluate	the	effectiveness	of	the	different	testing	methods	when	it	came	to	

pre‐	 and	 post‐	 damage,	 all	 three	 dynamic	 tests	 were	 also	 performed	 after	 each	 damage	

scenario.	 	 While	 impact	 testing	 was	 easier	 to	 implement	 in	 the	 laboratory	 setting,	 the	

shaker	 testing	 provided	 better	 results	 when	 the	 damage	 scenarios	 were	 considered.		

Impact	 testing	 proved	 to	 be	 rapid	 to	 implement	 and	 setup	with	 a	 lower	 cost,	 but	would	

require	on‐site	personnel	in	a	bridge	testing	situation.		Shaker	testing	was	more	difficult	to	

set	up	due	to	 the	weight	and	cumbersome	size/shape	of	 the	shaker	device,	but	would	be	

able	to	be	setup	for	remote	controlling	on	a	bridge.		The	downside	to	this	approach	would	

be	the	high	cost	of	the	shaker	device.		When	the	modal	flexibilities	from	the	impact	testing	

for	 the	 three	 damage	 cases	 were	 compared	 with	 the	 undamaged	 case,	 the	 results	 were	

somewhat	confusing.	 	All	three	of	the	damage	cases	appeared	to	result	in	a	structure	that	

was	 stiffer	 than	 the	 undamaged	 case,	 but	 each	 of	 the	 induced	 damage	 scenarios	 should	

have	 led	 to	a	 reduction	 in	 stiffness.	 	On	 the	other	hand,	 the	shaker	 test	 results	 showed	a	

similar	trend	to	the	analytical	model,	where	each	damage	case	showed	a	greater	reduction	

of	 stiffness.	 By	 performing	 both	 types	 of	 tests	 before	 and	 after	 the	 damage,	 a	 direct	

comparison	 between	 the	 tests	 could	 be	 performed.	 	 Overall,	 the	 shaker	 testing	 provided	

better	results.		
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It	was	hoped	that	ambient	testing	would	provide	a	means	of	long	term	monitoring	and	

bridge	evaluation,	given	that	it	is	a	proven,	low‐cost	structural	health	monitoring	method.		

Several	 researchers	 have	 shown	 the	 effectiveness	 of	 using	 ambient	monitoring	 to	 detect	

changes	 in	 a	 structure	 thereby	pointing	 to	 needed	maintenance.	 	 This	 has	 helped	bridge	

owners	 to	maintain	 their	 bridges	more	 efficiently.	 	 Applying	 this	 same	 concept	 to	 rapid	

response	 and	 recovery	 operations	 by	 providing	 a	 quantifiable	 bridge	 safety	would	 have	

been	ideal.		Therefore,	being	able	to	correlate	ambient	results	to	impact	or	shaker	results	is	

desirable.	 	 Through	 this	 study,	 it	 was	 found	 that	 a	 reliable	 correlation	 between	 these	

different	 testing	 types	was	not	possible.	 	Disregarding	 amplitude	differences,	 the	pseudo	

modal	 flexibility	 found	 from	ambient	 testing	did	not	resemble	 the	modal	 flexibility	 found	

from	either	impact	or	shaker	testing.		While	mode	shapes	and	frequencies	were	similar	to	

the	other	methods,	 these	 indicators	alone	only	pointed	 to	 the	 fact	 that	damage	occurred,	

and	could	not	quantify	the	damage.	

Three	 different	 data	 acquisition	 architectures	 were	 used	 for	 the	 testing	 performed.		

The	National	 Instruments	SCXI	device	with	capacitive	accelerometers	did	not	contain	 the	

resolution	necessary,	and	provided	 inferior	results.	 	The	National	 Instruments	PXI	device	

with	piezoelectric	accelerometers	provided	very	good	results.		The	Data	Physics	Corp.	DAQ	

device	also	provided	very	good	results.		The	down	side	to	the	Data	Physics	device	was	the	

cost.		A	similar	setup	with	a	NI	PXI	device	was	around	half	the	cost	yet	still	provided	good	

results.		When	shaker	testing	was	performed	with	the	Data	Physics	device,	the	results	were	

cleaner	due	to	internal	filtering	and	anti‐aliasing	hardware	which	was	not	present	in	the	NI	
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PXI.		Overall,	the	National	Instruments	PXI	device	provided	the	best	economy	for	being	able	

to	set	up	a	remote	monitoring	system	and	obtain	usable	results.			

Some	 off‐the‐shelf	 software	 was	 also	 used	 and	 evaluated	 for	 comparison	 purposes.		

M+P	 International’s	 software,	 “Smart	 Office,”	 was	 used	 as	 a	 testing	 setup	 and	 post‐

processing	program.		Several	problems	were	encountered	with	this	software.		The	software	

was	very	prone	to	crashing,	and	proved	to	be	an	unstable	platform	for	post‐processing	of	

data.	 	 It	also	did	not	allow	the	direct	computation	of	modal	 flexibility,	 the	end	goal	of	 the	

dynamic	 characterization.	 	 The	 modal	 properties	 were	 not	 easily	 exportable	 to	 other	

programs	such	as	MATLAB,	and	the	overall	usability	was	poor.		The	benefit	of	the	software	

was	its	ability	to	provide	the	framework	for	impact	testing.		This	testing	platform	was	easy	

to	use	and	follow.		

The	 Data	 Physics	 device	 came	 with	 proprietary	 software	 and	 was	 able	 to	 facilitate	

impact	testing.		It	was	also	able	to	facilitate	shaker	testing	and	ambient	testing,	and	proved	

to	be	a	very	easy	to	use	program.		Being	able	to	facilitate	all	three	different	dynamic	tests	

was	 an	 advantage.	 This	 program	 also	 did	 not	 contain	 the	 capability	 for	 finding	 modal	

flexibility	or	other	dynamic	characterization	properties.	As	noted	earlier,	the	limiting	factor	

was	cost.	

The	 post	 processing	was	 therefore	 performed	 in	MATLAB	with	 code	written	 by	 the	

author.	 This	 proved	 to	 be	 the	 best	method	 for	 post‐processing	 the	 data	 into	 the	 desired	

results.	Thinking	 forward,	 the	downside	 to	 this	 approach	would	be	 the	need	 for	 training	

individuals	to	use	the	code	written	in	an	efficient	and	effective	manner.	
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Overall,	the	NI	PXI	data	acquisition	architecture	coupled	with	shaker	testing	and	post	

processing	in	MATLAB	proved	to	be	the	best	choice	for	a	pre‐	and	post‐	hazard	condition	

evaluation	of	bridges.	

9.2 EXPERIMENTAL	SENSOR	OPTIMIZATION	

Both	input	and	output	optimization	studies	were	performed	experimentally	on	the	grid	

model.	From	these	studies,	it	was	found	that	the	analytical	model	produced	in	SAP2000	did	

not	 accurately	 predict	 the	 experimental	 results.	 By	 comparison,	 it	 was	 found	 that	 1st	

Bending,	1st	Torsion,	and	1st	Butterfly	modes	contributed	the	most	to	modal	flexibility,	and	

were	 therefore	 key	 modes	 to	 capture	 during	 subsequent	 testing.	 It	 was	 found	 that	

supplying	 input	 from	 the	 shaker	 into	 five	 central	 locations	 produced	 nearly	 identical	

results	 as	 supplying	 input	 to	 all	 locations	 on	 the	 structure.	 Input	 Cases	 #6	 and	 #7,	 as	

discussed	in	Section	5.5,	proved	to	provide	the	best	combination	of	accuracy	coupled	with	a	

low	number	of	needed	input	locations.		

Five	different	sensor	removal	schemes	were	implemented	on	the	experimental	data	in	

the	form	of	removing	columns	from	the	FRF	matrix.	The	resulting	data	was	processed	into	

modal	flexibility,	and	the	deflection	profiles	were	created	and	compared	to	the	full	array	of	

sensors.	It	was	found	that	Scheme	#5	(see	Section	5.5)	was	the	optimum	balance	between	

number	of	sensors	and	accuracy	of	output.	

It	was	also	found	that	when	implementing	a	high	reduction	of	response	sensors,	some	

of	 the	 contributing	 modes	 of	 the	 response	 were	 lost.	 	 This	 loss	 resulted	 in	 a	 modal	

flexibility	that	was	less	accurate.		It	was	observed	that	when	a	high	number	of	sensors	were	
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removed,	 some	 of	 the	 mode	 shapes	 became	 more	 difficult	 to	 recognize	 because	 of	 low	

spatial	resolution,	also	leading	to	a	less	accurate	modal	flexibility.	

Overall,	it	was	found	that	keeping	both	the	input	and	response	locations	in	the	central	

region	of	the	structure	produced	very	accurate	results,	while	keeping	 input	and	response	

locations	only	near	the	supports	produced	marked	changes	 in	 the	modal	 flexibility	of	 the	

structure.		However,	having	response	sensors	on	the	supports	allowed	for	locating	damage	

caused	 from	 a	 change	 is	 support	 condition.	 For	 application	 on	 a	 simply	 supported	 in‐

service	bridge	structure,	a	normalized	sensor	setup	was	created	(Section	8.4).		It	was	found	

that	the	first	bending	and	torsion	modes,	as	well	as	the	first	butterfly	mode	were	important	

contributors	to	accurate	modal	flexibility,	and	were	able	to	be	accurately	represented	with	

sensors	 in	 the	 central	 region	 of	 the	 structure.	 An	 important	 discovery	 was	 that	 the	

analytical	modeling	did	not	accurately	represent	the	modes	with	the	highest	contributions.		

Therefore,	 using	 computer	 algorithms	 based	 upon	 these	 analytical	 models,	 as	 many	

researchers	 have	 done,	may	 not	 be	 the	most	 accurate	 approach.	 	 An	 analytical	model	 is	

simply	 one	 of	 many	 possible	 idealizations	 of	 an	 actual	 structure	 that	 may	 or	 may	 not	

accurately	reflect	the	actual	behavior	of	the	structure,	especially	more	complex	structures.			

9.3 MODIFIED	LOAD	RATING	

The	dynamic	characterization	of	a	grid	model	structure	was	presented	in	the	form	of	

natural	 frequencies,	 mode	 shapes,	 and	 modal	 flexibility.	 	 These	 values	 represent	 a	

quantitative	 way	 of	 presenting	 the	 status	 of	 a	 bridge	 following	 a	 hazard	 event.	 	 Many	

engineers	 would	 not	 know	 how	 to	 interpret	 the	 data,	 let	 alone	 the	 bridge	 owners,	
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transportation	 officials,	 etc.	 Therefore,	 in	 order	 to	 present	 results	 that	 would	 be	 more	

conceptual	and	useful	to	bridge	owners	and	others,	a	modified	load	rating	procedure	was	

developed	 that	 utilizes	 these	 dynamic	 characterization	 results.	 The	modified	 load	 rating	

represents	a	simple	number	that	officials	could	use	to	assess	the	safety	and	serviceability	of	

a	bridge	following	a	hazard	event.	The	modification	factor,	K,	was	developed	for	use	from	

dynamic	 testing	 data,	 namely	 the	 modal	 flexibility	 matrix.	 This	 modification	 factor	 is	 a	

factor	 to	 be	 applied	 to	 an	 existing	 load	 rating	 to	 reduce	 the	 posted	 capacity	 of	 a	 bridge	

following	a	hazard	event.	The	benefit	with	this	approach	was	twofold:	one,	eliminating	the	

need	 for	 bridge	 inspectors	 to	 immediately	 assess	 the	 safety	 of	 a	 bridge	 subjected	 to	 a	

hazard	 event,	 and	 two,	 eliminating	 the	 need	 for	 a	 finite	 element	 model	 that	 must	 be	

updated	in	order	to	obtain	a	new	load	rating	following	the	hazard.	

The	modification	 factor	was	developed	 from	the	AASHTO	specifications	applicable	 to	

static	 load	 testing	 of	 in	 service	 bridges.	 	 It	was	 shown	 that	 the	modal	 flexibility	 derived	

from	the	dynamic	testing	of	the	structure	could	be	used	to	create	a	modified	load	rating	for	

a	bridge.			

Many	assumptions	were	used	in	the	development	of	the	modification	factor.	The	bridge	

must	be	a	simply	supported,	single	span	structure.	Multiple	spans	would	work	as	 long	as	

they	are	simply	supported,	and	are	not	continuous	over	supports.	Also,	the	assumption	of	a	

uniformly	 distributed	 load	 was	 used.	 To	 mitigate	 the	 error	 found	 from	 discretizing	 the	

uniformly	distributed	 load	 into	a	series	of	point	 loads,	a	 confidence	 factor,	ϕ	=	1.15,	was	

created.	 	Using	 this	 factor	 reduced	 the	modification	 factor,	K,	 thereby	producing	 a	 lower	

modified	bridge	rating	which	would	therefore	be	conservative.	It	was	also	assumed	that	the	
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deflections	predicted	by	modal	flexibility	could	be	interpolated	to	higher	values,	i.e.	rating	

truck	values.	Assuming	that	the	structure	will	behave	in	the	linear	elastic	range	up	to	the	

loads	produced	by	a	rating	truck	is	unproven,	and	needs	further	study.	It	is	recommended	

that	 a	 series	 of	 static	 diagnostic	 and	 proof	 load	 tests	 be	 performed	 alongside	 dynamic	

characterization	on	an	in‐service	bridge	to	validate	the	effectiveness	of	this	approach.	

The	internal	strains	used	in	the	calculation	of	the	modification	factor	were	found	from	

the	 deflections	 produced	 from	multiplying	 the	modal	 flexibility	matrix	 by	 a	 load	 vector.	

Some	error	was	found	near	the	supports	and	at	mid‐span	from	this	method,	and	was	due	to	

the	 uniformly	 distributed	 load	 being	 represented	 as	 point	 loads	 at	 discrete	 points.	 It	 is	

therefore	recommended	 that	 further	 study	be	done	with	 the	 flexibility	matrix	 to	 find	 the	

internal	 strains	 from	matrix	 structural	 analysis	using	element	 stiffness	 coefficients.	 	This	

could	 then	 be	 compared	 to	 the	 aforementioned	 procedure	 to	 validate	 and	 compare	 its	

effectiveness.		It	is	believed	that	the	use	of	deflection	profiles	to	find	strains,	as	outlined	in	

this	 thesis,	 would	 be	 easier	 for	 engineers	 and	 bridge	 owners	 to	 use,	 and	 may	 be	 more	

applicable	for	personnel	training	purposes.		

9.4 OPTIMUM	BRIDGE	HEALTH	MONITORING	STRATEGY	

The	 overarching	 objective	 of	 the	 research	 was	 to	 recommend	 an	 optimum	 bridge	

health	monitoring	strategy.	While	this	was	the	primary	objective,	the	previously	mentioned	

three	objectives	were	important	contributors	to	this	goal.	

It	 is	 important	 to	 note	 that	 the	 laboratory	 study	presented	had	 a	 limited	 scope.	 The	

grid	model	 that	was	 tested	was	a	simply	supported,	girder‐type	structure.	Therefore,	 the	
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applications	 presented	 are	 limited	 to	 simply	 supported	 girder	 bridge	 structures.	 	 The	

results	of	 this	study	would	not	be	applicable	 to	other	 types	of	bridge	structures	(trusses,	

arches,	 long‐span	 structures,	 etc.)	 without	 further	 investigation	 since	 the	 behaviors	 of	

these	structures	are	 fundamentally	different	 than	a	 simply	supported	girder	bridge.	 	The	

grid	 model	 also	 did	 not	 contain	 a	 concrete	 deck.	 A	 concrete	 deck	 would	 substantially	

change	 the	 response	 of	 the	 structure	 because	 of	 the	 added	 stiffness	 as	 well	 as	 the	

composite	action	that	could	be	provided	by	the	slab.	While	the	lab	model	did	not	include	a	

slab,	 it	 is	 hypothesized	 that	 the	 approaches	 presented	 here	 would	 still	 be	 applicable	 to	

actual	 bridges,	whether	 or	 not	 their	 concrete	 decks	 are	 composite,	 because	 the	 dynamic	

behavior	of	these	structures	will	still	be	governed	by	bending	responses.			

In	 order	 to	 rapidly	 and	 remotely	 assess	 the	 damage	 to	 a	 bridge	 following	 a	 hazard	

event,	a	dynamic	testing	approach	was	needed.	It	was	found	that	dynamic	testing	by	shaker	

testing	 provided	 the	 best	 results,	 and	 is	 recommended	 as	 the	 best	 test	 strategy	 for	

quantifying	 damage.	 It	 should	 be	 noted	 that	 any	 dynamic	 method	 utilized	 in	 structural	

characterization	will	contain	some	error.	Even	when	testing	a	very	simply	cantilever	beam,	

errors	 of	 around	 7%	were	 found.	 This	 was	 further	 amplified	 when	 the	 grid	model	 was	

tested,	and	is	expected	to	increase	further	when	an	in‐service	structure	is	tested.	

While	 shaker	 testing	 was	 found	 to	 be	 the	 best	 method,	 it	 still	 has	 some	 inherent	

difficulties	associated	with	 it.	One	problem	encountered	with	shaker	 testing	was	 the	cost	

and	 size	 of	 the	 shaker.	 A	 long	 stroke	 dynamic	 linear	 mass	 shaker	 was	 used	 for	 the	

laboratory	testing,	but	very	little	amplitude	was	needed	to	excite	the	structure.	This	shaker	

was	coupled	to	the	structure	and	placed	on	the	supporting	slab	underneath	the	structure.		
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For	 an	 in‐service	 bridge	 situation,	 this	 would	 be	 difficult	 and	 expensive	 to	 accomplish,	

especially	 given	 that	 using	 several	 excitation	 locations	 provides	 the	 best	 results.	 It	 is	

therefore	 recommended	 that	 the	 use	 of	 multiple,	 small‐scale	 mass	 shakers	 be	 studied.	

Several	manufacturers	produce	low	cost	mass	shakers,	primarily	for	the	audio	industry,	to	

enhance	the	felt	bass	effect	of	sound.	Given	that	only	a	small	force	amplitude	is	needed	in	

order	 to	 accurately	 characterize	 a	 structure,	 these	 shakers	 may	 prove	 to	 be	 an	 ideal	

solution	for	remotely	characterizing	bridges	by	dynamic	testing.		An	array	of	these	shakers	

could	be	set	up	on	a	monitored	bridge	and	remote	control	of	the	input	would	be	possible,	

eliminating	the	need	for	on‐site	personnel.	

It	was	also	found	that	only	a	small	number	of	sensors	(as	little	as	seven)	were	needed	

to	accurately	characterize	the	structure,	and	these	were	located	in	the	central	region	of	the	

span.	 While	 a	 full	 array	 of	 sensors	 would	 provide	 the	 best	 results	 and	 resulting	

characterization,	 using	 a	 smaller	 number	 still	 provides	 very	 usable	 results.	 The	

recommended	optimum	sensor	scheme	was	presented	in	Chapter	8.			

Because	of	the	variability	of	constructed	systems,	along	with	the	observation	that	finite	

element	 modeling	 alone	 cannot	 predict	 the	 uniqueness	 of	 a	 constructed	 system,	 it	 is	

recommended	 that	 a	 pre‐incident	 test	 be	 completed	 on	 any	monitored	 bridge.	 This	 pre‐

incident,	or	“baseline,”	test	would	need	to	be	done	with	the	same	excitation	device	used	for	

the	 post‐incident	 evaluation.	 It	would	 be	 ideal	 for	 this	 pre‐incident	 test	 to	 be	 completed	

with	 a	 full	 array	 of	 sensors	 in	 order	 to	 gain	 a	 more	 complete	 and	 reliable	 dynamic	

characterization.		The	sensor	setup	could	then	be	reduced	to	the	scheme	presented	here	for	

long	 term	 monitoring	 and	 post‐incident	 measurements.	 While	 ambient	 testing	 does	
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provide	 some	 insight,	 it	 is	 not	 recommended	 for	 specific	 hazard	 assessment	 analysis.	 	 A	

measured	input	is	needed	in	order	to	achieve	a	modified	load	rating,	and	this	may	be	more	

feasible	using	small‐scale	shakers.			

Finally,	 it	was	 found	 that	a	 load	rating	modification	 factor	 can	be	obtained	using	 the	

dynamic	 test	 results.	 This	was	 accomplished	 in	 a	 laboratory	 setting	 alone	 and	 therefore	

needs	 more	 research	 and	 verification	 on	 in‐service	 bridges	 in	 order	 to	 evaluate	 its	 full	

effectiveness.	 It	 is	 recommended	 that	 the	 modification	 factor,	 K,	 found	 from	 dynamic	

testing	be	compared	to	the	modification	factor	found	from	a	static	diagnostic	load	test	on	a	

girder	bridge	to	validate	its	effectiveness.	The	method	employed	in	this	research	was	based	

off	 of	 a	 simple	 approach	 derived	 from	 the	 AASHTO	 bridge	 evaluation	 specifications	 and	

utilized	 deflection	 profiles	 obtained	 using	 the	modal	 flexibility	 matrix.	While	 this	 was	 a	

simple	 approach,	 it	 was	 found	 to	 be	 effective.	 Further	 investigation	 using	 matrix	

transformations	 to	 find	 the	 internal	 strains	 directly	 from	 the	 flexibility	 matrix	 is	

recommended	 as	 a	 possible	 alternative	 means	 of	 obtaining	 the	 data	 necessary	 for	 a	

modified	load	rating.		

Implementing	 the	 guidelines	 presented	 here	 would	 enable	 bridge	 owners,	 DOT	

personnel,	 and	 emergency	 response	 personnel	 to	 have	 confidence	 when	 evaluating	 the	

condition	of	a	bridge	subjected	 to	a	hazard	event.	The	approach	presented	here	could	be	

implemented	both	rapidly	and	remotely	with	minor	amount	of	additional	effort	and	cost,	

thereby	decreasing	the	time	necessary	to	evaluate	the	serviceability	and	safety	of	bridges	

affected	 by	 hazard	 events.	 	 This	 would	 in	 turn	 create	 a	 faster	 emergency	 response	 and	

restore	critical	supply	chains	to	an	affected	area.			
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